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Preface

What can we do to reduce global warming? How can we prevent another global financial

crisis? How to fight AIDS? How can we reduce hunger in the world? These questions ask

about causal effects of interventions. Obviously, interventions based on the wrong causal

theories and hypotheses will cost the life of many and huge amounts of money that could

be spent more appropriately. Even if our daily problems are less dramatic, they are of the

same nature. Just think about your own actions that you have to chose in your responsi-

bilities as a student, scientist, teacher, physician, psychologist, politician, or as a parent!

Whatever you do has effects, and these effects might be different if you take one action

instead of another one. It is these kind of thoughts that makes us believe that there is no

other issue in the methodology of empirical sciences that deserves and needs more atten-

tion and effort than causality. And because the dependencies we are investigating are of

a nondeterministic nature, we need a probabilistic theory of causality. In other words, we

need to understand probability and causality.

What this book is about

Empirical causal research involves several inferences and interpretations. Among these

are:

(a) statistical inference, that is, the inference from a data sample to parameters charac-

terizing the distributions of random variables,

(b) causal inference, that is, the inference from parameters characterizing the distribu-

tions of random variables to causal effects and/or dependencies,

(c) interpretation of the putative cause,

(d) interpretation of the outcome variable,

(e) interpretation of the random experiment considered.

This book does not deal with all these points. We will neither discuss the mathemat-

ics of statistical inference nor the content issues of construct validity or external validity

(Campbell & Stanley, 1963; T. D. Cook & Campbell, 1979; Shadish, Cook, & Campbell, 2002)

involved in points (c) to (e). Instead we will focus on the second point: causal inference,

that is, the inference from parameters (such as the conditional expectation values of an

outcome variable in two treatment conditions, which, per se, have no causal interpreta-

tion) to causal effects. This is what the probabilistic theory of causal effects presented in

this book is about. As will be shown, causal effects are also parameters that characterize

the joint distributions of the random variables considered in a random experiment. How-

ever, their definitions are less obvious than ‘ordinary’ conditional expectation values and

their differences.
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Basic idea

In order to get a first impression of what this means, let us briefly formulate the basic

idea that can most easily be explained if the putative (or presumed) cause is a treatment

variable. Suppose an individual, or in more general terms, an observational unit, could be

treated by condition 1 or it could be treated by condition 0, everything else being invariant.

If there is a difference in the outcome considered (some measure of success of the treat-

ment), then this difference is due to the difference in the two treatment conditions. This

conception goes back at least to Mill (1843/1865).

Multiple determinacy

The problem with this first version of the basic idea is that most outcomes are multiply

determined, that is, they are not only influenced by the treatment variable, but by many

other variables as well. In the field of agricultural research, for example, the yield (outcome)

of a variety does not only depend on the variety (treatment) itself, but it also depends

on the quality of the plot (observational unit), such as the average hours of sunshine on

the plot per day, the amount of water reaching the plot, and the number of microbes in

the plot, and so on. Although Mill’s idea sounds perfect, it is not immediately clear which

implications it has for practice, because the number of other causes is often too large for

keeping constant all of them. Furthermore, Mill’s idea fails to distinguish between poten-

tial confounders and intermediate variables. Holding constant all intermediate variables

as well — and not only all pretreatment variables — would imply that there is no treatment

effect any more, if we assume that all treatment effects have to be transmitted by some

intermediate variables.

Because of the problem of multiple determinacy, Mills conception has been comple-

mented by Sir Ronald A. Fisher (1925/1946) and by Jerzy S. Neyman (1923/1990) in the

second and third decades of the last century. Simply speaking, emphasizing and propa-

gating the randomized experiment, Fisher replaced the ceteris paribus clause (‘everything

else invariant’) by the ceteris paribus distributionibus clause: all other possible causes (the

‘pretreatment variables’) having the same distribution. This is what randomized assign-

ment of units to treatment conditions, for example, based on a coin flip, secures.

A metaphor — The invisible man and his shadow

Imagine an invisible man. Although we cannot see him, suppose we know that he is there,

because we can see his shadow. Furthermore, suppose we would like to measure his size.

Doing that, we have two problems, a theoretical and a practical one. The theoretical prob-

lem is to define size. We have to clarify that we do not mean ‘volume’ or ‘weight’, but

‘height’ — without shoes, and without hat and hair. Unfortunately, actual height varies

slightly in the course of a day. Hence, we define size to be the expectation (with respect

to the uniform distribution over the 24 hours) of the momentary heights. This solves the

theoretical problem; now we know what we want to measure.

However, because the man is invisible, we cannot measure his size directly — and this

is not only because his size slightly varies over the day. The crucial problem is that we

can only observe his shadow. And this is the practical problem: How to determine his size

from his shadow? Sometimes, there is almost no shadow at all, sometimes it is huge. Some
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geometrical reflection yields a first simple solution: measuring the shadow when the sun

has an angle of 45°. But what if it is winter and the sun does not reach this angle? Now we

need more geometrical knowledge, taking into account the actual angle of the sun and the

observed length of the shadow. This will yield an exact measure of the size of the invisible

man at this time of the day as well.

Determining a causal effect we face the same kind of problems. First, we have to de-

fine a causal effect, and second, we have to find out how to determine it from empirically

estimable parameters such as true means, that is, from conditional expectation values.

The simple solution — corresponding to the 45° angle of the sun in the metaphor — is

the perfect randomized experiment. The sample mean differences we observe in a ran-

domized experiment only randomly deviate from the causal effect (due to random sample

variation). In contrast, in quasi-experiments and observational studies, solutions to the

practical problem are more sophisticated. They are also more sophisticated than in the

metaphor of the invisible man, because it is not only one other variable (the angle) that

determines the length of the shadow; instead there often are many other variables sys-

tematically determining the sample means as well as the true means that are estimated by

these sample means. This is again the problem of multiple determinacy. Furthermore, an

observed effect may even be negative although the true causal effect is positive, and vice

versa. And this reversal of effects can be systematic, and not only be due to sampling error.

This book presents a solution to the theoretical and the practical problems mentioned

above. Unfortunately, both solutions are not as simple and obvious as in our metaphor.

Furthermore, there is not only one single kind of causal effects, even if we restrict ourselves

to total causal effects and do not consider direct and indirect effects).

Total individual and average causal effects

To our knowledge, the first pioneer tackling the theoretical and the practical problems

was Jerzy S. Neyman (1923/1990). While Fisher propagated the design technique of ran-

domization, Neyman introduced the concepts of total individual and average causal ef-

fects, thus attempting a first solution to the theoretical problem mentioned above. (Note,

however, that he used different terms for these concepts). Developing statistical meth-

ods for agricultural research, he assumed that, for each individual plot, there is an intra-

individual (i.e., plot-specific) distribution of the outcome variable, say Y , under each treat-

ment. He then defined the individual causal effect of treatment x compared to treatment x ′

to be the difference between the intra-individual (plot-specific) expectation of Y (the “true

yield”) given treatment (“variety”) x and the intra-individual (plot-specific) expectation of

Y given treatment (“variety”) x ′. Once the individual causal effect is defined, the average

treatment effect of x compared to x ′ on Y is simply the expectation (true mean) of the cor-

responding individual (plot-specific) causal effects in the set (population) of observational

units (plots). Similarly, several kinds of conditional effects can be defined, conditioning, for

instance, on covariates, that is, on other causes of Y that cannot be affected by X , such as

measures of the quality of the soil before treatment, average hours of sunshine, average

hours of rain, and so on.
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Total, direct, and indirect effects

At about the same time as Neyman and Fisher developed their ideas, Sewall Wright

(Wright, 1918, 1921, 1923, 1934, 1960a, 1960b) developed his ideas on path analysis and the

concepts of total, direct, and indirect effects. While his total effect aims at the same idea

as the causal total average effect, his direct and indirect effects were new. Simply speaking,

in the context of an experiment or quasi-experiment, a direct effect of the treatment is the

effect that is not transmitted through the intermediate variables; it is the conditional effect

of the treatment variable holding constant the intermediate variables on one of their val-

ues. In contrast, the indirect effect is the difference between the total effect and the direct

effect.

Fundamental problem of causal inference

Whereas the basic ideas outlined above are relatively simple and straightforward, trying to

put them into practice — that is, solving the practical problem mentioned above — is of-

ten difficult and needs considerable sophistication. The “fundamental problem of causal

inference” (Holland, 1986) is that we cannot expose an observational unit to treatment 1

and, at the same time, to treatment 0. However, this is exactly what is necessary if we want

to be sure that ‘everything else is invariant’, a clause that is also an implicit assumption in

the solution proposed by Neyman. Comparing the true yield of treatment 1 to treatment

0 within the same plot at the same time and identical conditions is an ideal version of the

ceteris paribus clause, which unfortunately is rarely accomplishable.

Pre-post designs

If we choose to first observe a unit under ‘no treatment’ and then observe it again af-

ter ‘treatment’, we may be tempted to interpret the pre-post differences as estimates of

the individual causal effects of the treatment given in between. However, this interpre-

tation might be wrong, because the unit may have developed (maturated, learned), may

have suffered from critical life events, may have experienced historical change, and so on

(see, e. g., Campbell & Stanley, 1963; T. D. Cook & Campbell, 1979; Shadish et al., 2002).

Hence, in these pre-post designs or synonymously, within-group designs, we have to make

assumptions on the nature of these possible alternative interpretations of the pre-post

comparisons, for example, that they do not hold in the application considered or that they

have a certain structure that can be taken into account when making causal inferences

based on pre-post comparisons.

Between-group designs

If, instead of making comparisons within a unit, we compare different units to each other

in between-group experiments, we certainly lose the possibility of estimating the individ-

ual causal effects. However, what we can hope for is that we are still able to estimate

the causal average total effect and certain causal conditional total effects. But how to es-

timate the average of the causal individual total effects if, due to the fundamental problem

of causal inference, the causal individual total effects are not estimable? Both, between-

group experiments and quasi-experiments, have a set of (observational) units, at least two
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experimental conditions (‘treatment conditions’, ‘expositions’, ‘interventions’, etc.), and at

least one outcome variable (‘response’, ‘criterion’, ‘dependent variable’) Y . In the medical

sciences, the units are usually patients. In psychology the observational units are often

persons, but it could be persons-in-a-situation, or groups as well. In economics it could

be subjects, companies, or countries, for instance. In educational sciences the units might

be school classes, schools, communities, districts, or countries. In sociology and the polit-

ical sciences, the units could be persons, but also communities, countries, and so on. In

this book we show how to define and also how to make inferences about the average of the

causal individual total effects in such sets (and subsets) of observational units and about

causal conditional total effects, conditioning on attributes of the observational units or on

pretest scores, for instance.

Scope of the theory

In order to delineate the scope of the theory, consider the following kind of random ex-

periment : Draw an observational unit u (e. g., a person) out of a set of units, observe the

value z of a (possibly multivariate qualitative or quantitative) potential confounder Z for

this unit, assign the unit or observe its assignment to x, one of several experimental condi-

tions, and record the numerical value y of the outcome variable Y . We will use U to denote

the random variable representing with its value u the unit drawn. Note that many observa-

tions can be made additionally to observing U , Z , X , and Y . Although this single-unit trial

is a prototype of the kind of empirical phenomena the theory is dealing with, there are

other single-unit trials in which the theory can be applied as well (see ch. 2). In fact, the

theory is applicable far beyond the true (i.e., the randomized experiment) and the quasi-

experiment. This includes applications in which the putative causes are not manipulable.

However, in this volume we do not treat the case in which the putative cause is a continu-

ous random variable. Otherwise, the theory has its limitations only if there is no clear time

order of the random variables considered as putative causes or outcomes.

True experiments and quasi-experiments

The single-unit trial described above is a random experiment, but not necessarily a ran-

domized experiment. A randomized experiment is a special random experiment in which

the drawn unit is assigned to one of the treatment conditions via randomization, for ex-

ample, depending on the outcome of a coin flip. (In empirical applications, the single-unit

trials are repeated n times, where n denotes the sample size.) Referring to single-unit trials,

we can distinguish the true experiment from the quasi-experiment as follows: In the true

experiment, there are at least two treatment conditions and the assignment to one of the

treatment conditions is randomized, for example, by flipping a coin. In a traditional ran-

domized experiment, for instance, the treatment probabilities are chosen to be equal for all

units. However, equal treatment probabilities for all units are neither essential for the defi-

nition of the true experiment nor for drawing valid causal inferences. We may as well have

treatment probabilities depending on the units and/or on another potential confounder

(for more details, see, e. g., Rem. 8.31), as long as these treatment probabilities are fixed

or known by the researcher. Note, however, that in designs, in which different units have

different treatment probabilities, standard techniques of data analysis such as t-tests or

analysis of variance do not test the correct hypotheses any more.
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For between-group designs, the quasi-experiment may be defined such that there are

at least two treatment conditions; however, in contrast to the true experiment, the treat-

ment probabilities are unknown. Nevertheless, valid causal inferences can be drawn in

quasi-experiments provided that we can rely on certain assumptions (see ch. 6). In specific

applications these assumptions might be wrong. If they are actually wrong, causal infer-

ences can be completely wrong as well.

Who should study this book?

The methodologist

In the first place, we would like to address the methodologist, that is, the expert in empiri-

cal research methodology, especially in the social, economic, behavioral, cognitive, medi-

cal, agricultural, and biological sciences. This book provides answers to some of the most

important and fundamental questions of these empirical sciences: What do we mean by

terms like ‘X affects Y ’, ‘X has an effect on Y ’, ‘X influences Y ’, ‘X leads to Y ’, and so on

used in our informal theories and hypotheses? How can we translate these terms into a

precise language (i. e., probability theory) that is compatible with the statistical analysis of

empirical data? How to design an empirical study and how to analyze the resulting data

if we want to probe our theories and learn from such data about the causal dependencies

postulated in our theories and hypotheses? And last but not least: How to evaluate in-

terventions, treatments, or expositions to (possibly detrimental) environments, and learn

about how which effects they have for which kind of subjects or observational-units, and

under which circumstances?

The statistician

Many statisticians believe that causality is beyond the horizon of their profession. Causal-

ity might be a matter of empirical researchers and philosophers, they say, but not their

own. They think that it cannot be treated mathematically and therefore a statistician

should refrain from causal interpretations. As a consequence, they ignore the issue of

causality. This book proves that these beliefs are prejudices. The theory of causal effects,

as presented here, is a branch of probability theory, which itself, at least since Kolmogorov

(1933/1977), is a part of pure mathematics — although with an enormous potential for

applications in many empirical sciences and even beyond. The main purpose of this book

is to translate the informal concepts about causal effects shared by many methodologists

and applied statisticians into well-defined terms of mathematical probability theory. The

principle is not to use any term that itself is not defined in other mathematic terms, and

the result is a purely mathematical theory of causal effects. Of course, this will make it

harder to read this book for the methodologist and those not yet trained in probability

theory. However, the reward is a much deeper understanding of what is essential and a

much better grasp of the nature of our theories about the real world.

Of course, undefined terms are still used in this book, but only in the examples, in

the interpretations, and in the motivations of the definitions. The theory itself is pure

mathematics, just in the same way as Kolmogorov’s probability theory presented in 1933,

which explicated the mathematical, measure-theoretical structure of probabilistic con-

cepts. Substantive meaning results, for example, if we interpret the core components of
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the formal structure in a specific random experiment considered. And this is also true for

the theory of causal effects presented in this book.

The empirical scientist

The empirical scientist in the fields mentioned above has at least three good reasons to

study this book. The first is that some crucial parts of his theories and hypotheses are

explicated, at least when it comes to considering a concrete experiment or study. The am-

biguity in causal language such as ‘X affects Y ’, ‘X has an effect on Y ’, ‘X influences Y ’,

‘X leads to Y ’ are not necessary any more. Reading this book will make it possible to re-

place these ambiguous terms by well-understood and well-defined terms, improving the

precision of empirical research and theories.

The second motivation of the empirical scientist is that even if he knows his own theo-

retical concepts and hypotheses, he still has to know how to design experiments and stud-

ies that enable him to test them empirically.

Third, the standard ways of analyzing data offered in the textbooks of applied statistics

and in the available computer programs often do not estimate and test the causal effects

and dependencies we refer to in our theories. And this is not only bad for the empirical

scientist but also for all those relying on the validity of his inferences and his expertise. Just

think about all the harmful consequences of wrong causal theories in various empirical

research fields, if they are applied to solving concrete problems!

The experimental scientist

There are two messages for those who do their research with experiments, a good one and

a bad one. The good news is that, in a perfect randomized experiment, the causal average

total treatment effect is indeed estimated when comparing sample means between two

different treatment conditions. The bad news is that we can not rely on randomized as-

signment of units to treatment conditions when it comes to estimating direct and indirect

effects. More specifically, in such an analysis it is usually not sufficient to consider inter-

mediate variables, treatment and outcome variables. Instead we also have to include in

our analysis pre-treatment variables such as a pre-test of the intermediate variable and a

pre-test of the outcome variable and apply adjustment methods, very much in the same

way as we have to use these techniques in quasi-experiments. Hence, if we want to study

the black box between the treatment and the outcome variables, we have to adopt the

techniques of causal modeling that are far beyond traditional comparisons of means and

analysis of variance. (For more details see, e. g., ?, ?).

The philosopher of science

Philosophers of science study and teach the methodology of empirical sciences. In that

respect, their task is very similar to that of the methodologist, perhaps only more gen-

eral and less specific for a certain discipline. Therefore, it is not surprising that probabilis-

tic causality has also been tackled by philosophers of science (see, e. g., Cartwright, 1979;

Spohn, 1980; Stegmüller, 1983; Suppes, 1970). Compared to these approaches, our empha-

sis is more on those parts of the theory that have implications for the design of empirical

studies and the analysis of data resulting from such studies.
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The students in these fields

We believe that probabilistic causal effects is the most rewarding topic in methodology.

Although it is tough to get into it, you will get insights why all this methodology stuff was

useful and what it was good for. At least this is what our students say at the end of our

curriculum, even if they did not have the choice whether or not to take our course on

causal effects.

Research traditions in causal effects

Several research traditions have been contributing to the theory of causal effects in var-

ious ways. From the Neyman-Rubin tradition, we adopted the idea that it is important

to define various causal effects such as individual, conditional, and average total effects,

even though we modified and extended these concepts in important aspects. Defining

causal effects is important for proving that certain methods of data analysis yield unbi-

ased estimates of these effects if certain assumptions can be made. Are there conditions

under which the analysis of change scores (between pre- and post-tests) and repeated-

measures analysis of variance yield causal effects? Under which conditions do we estimate

and test causal effects in the analysis of covariance? Which are the assumptions under

which propensity score methods yield estimates of causal effects? Which are the assump-

tions under which an instrumental variable analysis estimates a causal effect? All these

questions and their answers presuppose that we have a mathematical definition of causal

effects. Simply speaking, in our theory we replace Rubin’s potential outcome variables by

our true-outcome variables, thus allowing for variance in the outcome (or response) vari-

ables given treatment and an observational unit. Many important results of the theory, for

example, about strong ignorability and about propensity scores remain unchanged, while

other results are new, giving more insights, and open the floor for new research techniques.

From the Campbellian tradition (see, e. g., Campbell & Stanley, 1966; T. D. Cook &

Campbell, 1979; Shadish et al., 2002) we learned that there are questions and problems

beyond the theory causal effects itself that are relevant in empirical causal research, such

as: How to generalize beyond the study? What does the treatment variable mean? What is

the meaning of the outcome variable? And, perhaps the most general question: Are there

alternative explanations for the effect? The vast majority of social scientists (including our-

selves) have been educated in this research tradition to some degree. Although this train-

ing is still very useful as a general methodology framework, it lacks precision and clarity

in a number of issues — and the definition of a causal effect is one of them that remains

unnecessarily vague in their ideas dealing with interval validity.

From the graphical modeling tradition (see, e. g., Cox & Wermuth, 2004; Pearl, 2009;

Spirtes, Glymour, & Scheines, 2000), we learned that conditional independence plays an

important role in causal modeling. This research tradition has also been developing tech-

niques to estimate causal effects and to search for causal models if specific assumptions

can be made. The fact that randomization in a true experiment in no way guarantees the

validity of causal inferences on direct effects has been brought up by this research tradi-

tion.

Structural equation modeling and psychometrics have been teaching us how to use la-

tent variables and structural equation modeling in testing causal hypotheses. Due to a

number of statistical programs such as AMOS (Arbuckle, 2006), EQS (Bentler, 1995), lavaan
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(Rosseel, 2012), LISREL (Jöreskog & Sörbom, 1996/2001), Mplus (Muthén & Muthén, 1998-

2007), OpenMx (OpenMx, 2009), RAMONA (Browne & Mels, 1998), structural equation

modeling became extremely popular in the social sciences. Although many users of these

programs hope to find causal answers, it should be clearly stated that structural equation

modeling — and this is true for all kinds of statistical models (including analysis of vari-

ance) — does neither automatically estimate and test causal effects, nor does it provide a

satisfactory theory of causal effects and dependencies. Nevertheless, this research tradi-

tion contributes — just like other areas of statistics — a number of statistical techniques

that can be very useful in causal modeling.

In this book, we also aim at embedding — and, where necessary, extending — con-

ventional statistical procedures such as analysis of covariance, nonorthogonal analysis of

variance, and latent variable modeling, but also more recent techniques based on propen-

sity scores into a coherent theory of probabilistic causality.

How to use this book

This book is written such that standard mathematical probability theory is sufficient for a

complete understanding, provided one takes the time that these topics require. In many

parts, this is not a book one can just read; instead it is a book to be studied. This includes

working on the questions and exercises provided in each chapter. We presume that the

reader is familiar with — or learns while studying this book — the essentials of probabil-

ity theory, including conditional expectations, conditional independence, and conditional

distributions. These essentials of probability theory are dealt with in Steyer and Nagel

(2017). That book is also referred to very often for definitions, theorems, and other propo-

sitions used in this text. These references are abbreviated by SN-Definition, SN-Theorem,

SN-Remark, or SN-(10.32), the latter referring to an equation or a proposition in that book.

We devoted this book almost entirely to the theory of causal effects. We also developed

the PC program Causal Effects Explorer (Nagengast, Kröhne, Bauer, & Steyer, 2007) that

can be used for exploring prima facie effects, conditional and average total effects given

certain parameters. We believe that this program is useful for teaching and learning the

fundamentals of the theory. Furthermore, the program EffectLiteR (Mayer, Dietzfelbinger,

Rosseel, & Steyer, 2016), can be used to estimate conditional and average total effects from

empirical data in experiments and quasi-experiments. Both programs, which are available

at www.causal-effects.de, may be used together with this book in a course on causal mod-

eling. In fact, this is the content of our workshops on the analysis of causal conditional and

average total effects, which are available both as videos-on-demand on the internet and

on DVDs, again at www.causal-effects.de.
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Introduction





Chapter 1

Introductory Examples

For more than a century there have been examples in the statistical literature showing that

comparing means or comparing probabilities (e. g., of success of a treatment) between a

group exposed to a treatment and a comparison group (unexposed or exposed to a dif-

ferent treatment) does not necessarily answer our questions: ‘Which treatment is better

overall?’ or ‘Which treatment is better for which kind of person?’ Differences between true

means and differences between probabilities (or any other comparison between probabil-

ities such as odds ratios, log odds ratios, or relative risk) are usually not the treatment ef-

fects we are looking for (see, e. g., Pearson, Lee, & Bramley-Moore, 1899; Yule, 1903; Simp-

son, 1951). They are just effects at first sight or “prima facie effects” (Holland, 1986).

Just like the shadow in the metaphor of the invisible man (see the preface), prima facie

effects reflect the effects of the treatment (the size of the invisible man), but also the effects

of other causes (the angle of the sun). The goal of analyzing causal effects is to estimate

the effect of the treatment alone, isolating it from other potential influences, for example,

from the effects of sex, educational background, socio-economic status, and so on. The

general idea is to define and, in applications, estimate a treatment effect that is not biased

by preexisting differences between treatment groups that would also be observed after

treatment if there were no treatment effect at all.

Overview

We illustrate systematic bias in determining total (as opposed to direct or indirect) treat-

ment effects in quasi-experiments by two examples. The first one deals with a dichoto-

mous outcome variable, the second with a quantitative one. Note that the problems de-

scribed in these two examples cannot occur in a randomized experiment, but they are

ubiquitous in nonrandomized quasi-experimental studies.

1.1 Example 1 — Joe and Ann With Self-Selection

In this example, the prima facie effect reverses if we switch from comparing the condi-

tional probabilities of success between treatment and control, that is, from comparing

P (Y =1 |X =1) to P (Y =1 |X =0)

to comparing the corresponding probabilities additionally conditioning on the person

variable U with values u= Joe , Ann , that is, to comparing

P (Y =1 |U=u, X =1) to P (Y =1 |U=u, X =0).



4 1 Introductory Examples

Table 1.1. Joe and Ann with self-selection – compressed table

U P(U=u) P(X =1 |U=u) P(Y =1|U=u , X = 0) P(Y =1|U=u , X =1)

Joe .5 .04 .7 .8

Ann .5 .76 .2 .4

This kind of phenomenon, which is already known at least since Yule (1903), is called

Simpson’s paradox (Simpson, 1951), and it is still being debated (see, e. g., Hernán, Clayton,

& Keiding, 2011). RST Neuere Literatur?

Table 1.1 shows the compressed table of a random experiment that is composed of three

parts.

(1) A person is sampled from a set of two persons, Joe and Ann, with identical proba-

bilities for each person u, that is, with probability P (U=u) = .5.

(2) If Joe is sampled, then he obtains treatment (X =1) with probability P (X =1 |U =Joe )

= .04. In contrast, if Ann is sampled, then she obtains treatment with probability

P (X =1 |U =Ann )= .76. (These numbers may reflect self-selection to treatment and

the different inclinations of the two persons to go to treatment.)

(3) If Joe is sampled and not treated, then his probabilityP (Y =1 |U =Joe , X =0) of suc-

cess is .7. If he is sampled and treated, then his probability P (Y =1 |U =Joe , X =1)

of success is .8. In contrast, if Ann is sampled and not treated, then her probability

P (Y =1 |U =Ann , X =0) of success is .2, and if she is sampled and treated, then her

probability P (Y =1 |U =Ann , X =1) of success is .4.

This table describes a random experiment and it contains all information we need to

compute the (causal) total effects of the treatment on the outcome variable Y (success),

including the (causal) conditional total effects given the person and the (causal) average

total effect of the treatment.

Note that Table 1.1 does not describe a randomized experiment, in which, by defini-

tion, the treatment probabilities P (X =1 |U=u) would be identical for all observational

units u. Instead, it describes a random experiment, which is that kind of empirical phe-

nomenon that we usually consider when we apply probability theory using terms such as

random variables, their expectations, variances, distribution, correlations, etc. In inferen-

tial statistics it is those concepts about which we formulate our hypothesis and that we try

to estimate in a sample.

In probability theory, we consider such a random experiment from the pre facto per-

spective. Hence, we do not consider data that would result from actually conducting such

a random experiment. Data are only important in order to learn about the laws of a ran-

dom experiment from observations. Data analysis is only a way to learn about these laws.

But it these laws of the random experiment that are of primary interest. More precisely, if

we know the eight probabilities displayed in Table 1.1, then we have all the information

that we need to compute the causal conditional and average total effects of the treatment

on the outcome (success). All it needs is to define these concepts in terms of probability

theory, and this is what this book is about.
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Table 1.2. Joe and Ann with self-selection – explicit table

Possible Observables Conditional

outcomes ωi probabilities
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=
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P
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=
1
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,U
)

ω1 = (Joe, no, −) .144 Joe 0 0 .04 .6 .7

ω2 = (Joe, no, +) .336 Joe 0 1 .04 .6 .7

ω3 = (Joe, yes, −) .004 Joe 1 0 .04 .42 .8

ω4 = (Joe, yes, +) .016 Joe 1 1 .04 .42 .8

ω5 = (Ann,no, −) .096 Ann 0 0 .76 .6 .2

ω6 = (Ann,no, +) .024 Ann 0 1 .76 .6 .2

ω7 = (Ann,yes,−) .228 Ann 1 0 .76 .42 .4

ω8 = (Ann,yes,+) .152 Ann 1 1 .76 .42 .4

Table 1.2 describes the same random experiment as Table 1.1, but in different way. The

eight triples such as (Joe, no, −) or (Ann, yes, +) represent one of the eight possible out-

comes ω1, . . . ,ω8 of the random experiment that are gathered in the set Ω of possible out-

comes. Remember, an event A is a subset of Ω that has a probability P (A), which is as-

signed by the probability measure P to each element A in the set A of all events (see SN-

ch. 4 for these elementary concepts of probability theory). The eight probabilities of the

elementary events contain the same information as the eight probabilities in Table 1.1. All

conditional probabilities appearing in Table 1.2 and all probabilities and all conditional

probabilities presented in Table 1.1 can be computed from these eight probabilities of the

elementary events.

Table 1.2 has the virtue of explicitly showing all possible outcomes of the random ex-

periment considered. Furthermore, it shows how the random variables U , X , and Y are

defined, showing the assignments of their values to each of the eight possible outcomes of

the random experiment (see SN-ch. 5 for the definition of a random variable). It also dis-

plays the conditional probabilities P (Y =1 |X ,U ), P (Y =1 |X ), and P (X =1 |U ), which are

random variables on the same probability space as the observables, that is, the random

variables U , X , and Y (see Def. 3.52 and Rem. 3.58 for the definition of such a conditional

probability).

The crucial point is that each of the conditional probabilities mentioned above also

assigns a value to each of the eight possible outcomes of the random experiment. For

example, the values assigned by P (X =1 |U ) to each outcome ωi ∈Ω are the conditional

probabilities P (X =1 |U=u). More precisely,

P (X =1 |U )(ωi ) = P (X =1 |U=u), if ωi ∈ {ω ∈Ω: U (ω) = u }. (1.1)

Similarly,
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Table 1.3. Joint and marginal probabilities of treatment and success

Treatment

Success No (X = 0) Yes (X =1)

No (Y =0) .240 .232 .472

Yes (Y =1) .360 .168 .528

.600 .400 1.000

Note. The entries in the four cells are the joint probabilities P(X=x ,Y =y), the other entries are

the marginal probabilities P(X=x ) (last row) and P(Y =y) (last column).

P (Y =1 |X )(ωi ) = P (Y =1 |X=x), if ωi ∈ {ω ∈Ω: X (ω) = x }, (1.2)

and

P (Y =1 |X ,U )(ωi ) = P (Y =1 |X=x ,U=u), if ωi ∈ {ω ∈Ω: X (ω) = x,U (ω) = u } (1.3)

(see Table 1.2 in order to check these assignment rules).

1.1.1 Joint probabilities P (X=x, Y =y)

Unfortunately, in realistic applications, we cannot estimate the probabilities of all elemen-

tary events displayed in Table 1.2 because, usually, we cannot repeat this random experi-

ment. Once, a person is treated, we cannot undo treatment and repeat this process. This

has been called the “fundamental problem of causal inference” (Holland, 1986). Often-

times a treatment is irreversible and the time between treatment and the assessment of

the outcome variable Y can take months and even years. Nevertheless, it is meaningful

to consider the random experiment described by Table 1.2 including the person-specific

probabilities of treatment and the probabilities of success given treatment and person. As

will be shown in chapters 4 and 5, we even have to consider this kind of random experi-

ment when we want to define causal effects.

However, what can be estimated in empirical applications are the joint probabili-

ties such as P (X=x,Y =y) and the conditional probabilities such as P (Y =1 |X =1) and

P (Y =1 |X =0), that is, the conditional probabilities of success given treatment and given

control, respectively. In order to estimate P (X=x,Y =y) we only have to observe the rela-

tive frequencies of the joint occurrence of treatment x and outcome y . In a simulation, we

can easily repeat this random experiment n times in order to generate a data sample of

size n (see Exercise 1-7). In contrast, in an empirical application, estimating P (X=x,Y =y)

requires to sample from a very large set of persons (observational units), and not just from

the set { Joe , Ann } of two persons. (See Splawa-Neyman, 1923/1990 for an early sampling

model dealing with the problem of non-replacement).

Table 1.3 shows the joint probabilities P (X=x,Y =y) of treatment and success, as well

as the marginal probabilities P (X=x) and P (Y =y) of treatment and success, respectively.

These probabilities are easily computed from the probabilities of the elementary events

displayed in the second column of Table 1.2. For example, the probability P (X =0,Y =1)
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Figure 1.1. Probability of success given treatment conditions

that the sampled person receives no treatment and is successful is the sum of the proba-

bilities of the elementary events {ω2} = {(Joe, no, +)} and {ω6} = {(Ann, no, +)}, that is,

P (X =0,Y =1) = P ({(Joe, no, +)})+P ({(Ann, no, +)}) = .336+ .024 = .36.

Similarly, the probability P (X =1,Y =1) that the sampled person receives treatment

and is successful is the sum of the probabilities of the two elementary events {ω4} =

{(Joe, yes, +)} and {ω8} = {(Ann, yes, +)}, that is,

P (X =1,Y =1) = P ({(Joe, yes, +)})+P ({(Ann, yes, +)}) = .016+ .152 = .168.

Table 1.3 is the theoretical analog to a contingency table that would be observed in

a data sample. More precisely, if we multiply the displayed numbers by the sample size,

then we receive the expected frequencies of the corresponding events. For example, if the

sample size is 1000, then we expect 240 cases in cell (X =0,Y =0) and 360 cases in cell

(X =0,Y =1), etc. Of course, in a data sample, the observed frequencies would fluctuate

around these expected frequencies (see Exercise 1-7).

1.1.2 Marginal probabilities P (X=x) and P (Y =y)

The marginal probabilities P (X=x) and P (Y =y) are also easily computed from the prob-

abilities of the elementary events displayed in the second column of Table 1.2. For exam-

ple, the probability P (X =0) that the sampled person receives no treatment is the sum of

the probabilities of the four elementary events {ω1} = {(Joe, no, −)}, {ω2} = {(Joe, no, +)},

{ω5} = {(Ann, no, −)}, and {ω6} = {(Ann, no, +)}, that is,

P (X =0) = P ({(Joe, no, −)})+P ({(Joe, no, +)})+P ({(Ann, no, −)})+P ({(Ann, no, +)})

= .144+ .336+ .096+ .024 = .6,

and this implies

P (X =1) = 1−P (X =0) = .4



8 1 Introductory Examples

Similary, the probability P (Y =1) that the sampled person is successful is the sum of the

probabilities of the four elementary events {ω2} = {(Joe, no, +)}, {ω4} = {(Joe, yes, +)}, {ω6} =

{(Ann, no, +)}, and {ω8} = {(Ann, yes, +)}, that is,

P (Y =1) = P ({(Joe, no, +)})+P ({(Joe, yes, +)})+P ({(Ann, no, +)})+P ({(Ann, yes, +)})

= .336+ .016+ .024+ .152 = .528,

which implies

P (Y =0) = 1−P (Y =1) = .472.

1.1.3 Prima facie effect

Comparing the conditional probability P (Y =1 |X =1) of success given the treatment con-

dition to the conditional probability P (Y =1 |X =0) of success given the control condition

would lead us to the (wrong) conclusion that the treatment is harmful. These two condi-

tional probabilities can be computed by

P (Y =1 |X=1) =
P (Y =1, X=1)

P (X=1)
=

.168

.4
= .42

and

P (Y =1 |X=0) =
P (Y =1, X =0)

P (X =0)
=

.36

.6
= .6,

respectively (see, e. g., SN-section 4.2). Figure 1.1 displays both conditional probabilities

in a bar chart.

These two conditional probabilities can be compared to each other in different ways.

The simplest one is looking at the difference P (Y =1 |X=1)−P (Y =1 |X=0). This is a par-

ticular case of the difference E (Y |X =1)−E (Y |X =0) between two conditional expecta-

tion values, in which the outcome variable Y is dichotomous with values 0 and 1 (see

SN-Remark 9.8). Following Holland (1986), we will call this difference the (unconditional)

prima facie effect and use the notation

PFE10 = E (Y |X =1) − E (Y |X =0) = P (Y =1 |X=1) − P (Y =1 |X=0) .

Hence, in this example,

PFE10 = P (Y =1 |X=1) − P (Y =1 |X=0) = .42 − .6 = −.18.

Other possibilities of comparing the two conditional probabilities are to compute the odds

ratio, its logarithm, or the risk ratio (see, e. g., SN-Remarks 13.14 to 13.16 or chapter 4 of

Rothman, Greenland, & Lash, 2008, for a detailed discussion of these and other effect pa-

rameters). No matter which of these effect parameters we choose, they all lead to the con-

clusion that the treatment is harmful (see Exercise 1-8). As shown in the following section

this conclusion is utterly wrong.

1.1.4 Individual total effects

The conclusion about the effect of the treatment is completely different if we look at the

treatment effects separately for Joe and Ann. Table 1.4 shows the joint distributions of
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Table 1.4. Joint and marginal probabilities of all three observables

Joe (U=Joe )

Treatment

Success No (X = 0) Yes (X =1)

No (Y =0) .144 .004 .148

Yes (Y =1) .336 .016 .352

.48 .02 .5

Ann (U=Ann )

Treatment

Success No (X = 0) Yes (X =1)

No (Y =0) .096 .228 .324

Yes (Y =1) .024 .152 .176

.12 .38 .5

Note. The entries in the four cells for Joe and in the four cells for Ann are the joint probabilities

P(U=u , X=x ,Y =y). The other entries are the joint probabilities P(U=u , X=x ) (third and last

row) and P(U=u ,Y =y) (last column), respectively, and the two marginal probabilities P(U=u).

treatment, success, and the person variable U with values Joe and Ann . The probabilities

of sampling Joe and of sampling Ann are identical, that is, P (U=Joe ) = P (U=Ann ) = .5.

Furthermore, the joint probabilities P (U=u, X=x ,Y =y) are the probabilities of the ele-

mentary events displayed in the second column of Table 1.2. These joint probabilities are

displayed again in a form analog to (2×2×2)-contingency table in Table 1.4.

As already mentioned in section 1.1.1, in empirical applications, this random exper-

iment cannot be repeated in order to obtain a data sample. However, we can repeat it

in s simulation (see Exercise 1-7). If, in such a simulation, we multiply the numbers dis-

played in Table 1.4 by the sample size, then we receive the expected frequencies of the cor-

responding events. For example, if the sample size is 1000, then we expect 144 cases in

cell (U =Joe , X =0,Y =0) and 336 cases in cell (U =Joe , X =0,Y =1), etc. Of course, in data

samples, the observed frequencies fluctuate around these expected frequencies.

Using the joint probabilities displayed in Table 1.4, the conditional probability of suc-

cess for Joe in the treatment condition can be computed as follows:

P (Y =1 |X=1,U=Joe ) =
P (U =Joe , X =1,Y =1)

P (U =Joe , X =1)
=

.016

.016+ .004
= .8

(see Exercise 1-9). In contrast, Joe’s conditional probability of success in the control con-

dition is

P (Y =1 |X=0,U=Joe ) =
P (U =Joe , X =0,Y =1)

P (U =Joe , X =0)
=

.336

.336+ .144
= .7.

Hence,
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P (Y =1 |X=1,U=Joe ) − P (Y =1 |X=0,U=Joe ) = .8 − .7 = .1,

which may lead us to conclude that the treatment is beneficial for Joe. Again, because Y is

dichotomous with values 0 and 1, this difference is a special case of the difference

E (Y |X =1,U =Joe )−E (Y |X =0,U =Joe ),

which we call the individual total (treatment) effect of Joe, using the notation ITEU ;10( Joe ).

Hence,
ITEU ;10( Joe ) = E (Y |X =1,U =Joe ) − E (Y |X =0,U =Joe )

= P (Y =1 |X=1,U=Joe ) − P (Y =1 |X=0,U=Joe ) .
(1.4)

What about the individual total effect of Ann? Table 1.4 shows that the conditional prob-

ability of success for Ann in the treatment condition is

P (Y =1 |X=1,U=Ann ) =
P (U =Ann , X =1,Y =1)

P (U =Ann , X =1)
=

.152

.152+ .228
= .4,

whereas it is

P (Y =1 |X=0,U=Ann ) =
P (U =Ann , X =0,Y =1)

P (U =Ann , X =0)
=

.024

.024+ .096
= .2

in the control condition. Figure 1.2 shows these conditional probabilities in a bar chart.

Considering the individual total effect

ITEU ;10( Ann ) = P (Y =1 |X=1,U=Ann ) − P (Y =1 |X=0,U=Ann )

= .40 − .20 = .20
(1.5)

of Ann may lead us to conclude that the treatment is also beneficial for Ann.

Hence, it seems that the treatment is beneficial for Joe and Ann. This, however, seems to

contradict our finding ignoring the person variable. Just considering the prima facie effect

PFE10 = E (Y |X =1)−E (Y |X =0) = P (Y =1 |X=1)−P (Y =1 |X=0) = −.18,

ignoring the person variable U , the treatment seems to be harmful.
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Figure 1.2. Conditional probabilities of success given treatment and person
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1.1.5 Prima facie effect versus expectation of the individual total effects

In contrast to our intuition, the prima facie effect E (Y |X =1)−E (Y |X =0) is neither the

simple average nor any weighted average of the corresponding individual total effects

ITEU ;10(u) = E (Y |X =1,U=u) − E (Y |X =0,U=u) .

This is studied in more detail in the sequel.

Prima facie effect

The conditional probability P (Y =1 |X=0) of success given control is the sum of the corre-

sponding probabilities P (Y =1 |X=0,U=Joe ) and P (Y =1 |X=0,U=Ann ), weighted by the

conditional probabilities P (U =Joe |X =0) and P (U =Ann |X =0), respectively, that is,

P (Y =1 |X=0) = P (Y =1 |X=0,U=Joe ) ·P (U =Joe |X =0) +

P (Y =1 |X=0,U=Ann ) ·P (U =Ann |X =0)

= .7 ·
.48

.6
+ .2 ·

.12

.6
= .6

[see SN-Box 9.2 (ii) and Exercise 1-10]. Because the difference between the conditional

probabilities P (U =Joe |X =0) = .48/.6 and P (U =Ann |X =0) = .12/.6 is large, the proba-

bility of success in treatment 0 is much closer to .7 than to .2 (see the dots above X=0 in

Fig. 1.3).

Similarly, the conditional probability P (Y =1 |X=1) of success given treatment con-

dition (X=1) is the sum of the two corresponding individual conditional probabilities

P (Y =1 |X=1,U=Joe ) and P (Y =1 |X=1,U=Ann ), weighted by the conditional probabili-

ties P (U =Joe |X =1) and P (U =Ann |X =1), respectively, that is,

P (Y =1 |X=1) = P (Y =1 |X=1,U=Joe ) ·P (U =Joe |X =1) +

P (Y =1 |X=1,U=Ann ) ·P (U =Ann |X =1)

= .8 ·
.02

.4
+ .4 ·

.38

.4
= .42.

Hence, the prima facie effect is

PFE10 = P (Y =1 |X=1)−P (Y =1 |X=0)

=
∑

u
P (Y =1 |X =1,U=u) ·P (U=u |X =1) −

∑

u
P (Y =1 |X =0,U=u) ·P (U=u |X =0)

= .42− .60. = −.18.

(1.6)

Because the two (X =1)-conditional probabilities P (U =Joe |X =1) = .02/.4 = .05 and

P (U =Ann |X =1) = .38/.4 = .95 are very different, the probability of success in treatment

1 is much closer to .4 than to .8 (see the dots above X=1 in Fig. 1.3). (The size of the area

of the dotted circles is proportional to the conditional probabilities P (U=u |X=x) that are

used in the computation of the conditional expectation values E (Y |X=x). This kind of

graphics has been adopted from Agresti, 2007).
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Figure 1.3. Conditional probabilities of success given treatment and person

Expectation of the individual total effects

The prima facie effect is not identical to the expectation of the individual total effects,

which is the expectation of the function ITEU ;10(U ), the values of which are the two in-

dividual total effects ITEU ;10( Joe ) and ITEU ;10( Ann ) for Joe and Ann, respectively, that is,

E
(

ITEU ;10(U )
)

=
∑

u

ITEU ;10(u) ·P (U=u)

=
∑

u

P (Y =1 |X =1,U=u) ·P (U=u) −

∑

u
P (Y =1 |X =0,U=u) ·P (U=u).

(1.7)

Because the two individual effects are ITEU ;10( Joe ) = .1 and ITEU ;10( Ann ) = .2,

E
(

ITEU ;10(U )
)

= .1 ·P (U= Joe )+ .2 ·P (U= Ann ) = .1 ·
1

2
+ .2 ·

1

2
= .15.

Hence, whereas the prima facie effect PFE10 = P (Y =1 |X=1)−P (Y =1 |X=0) is negative,

namely −.18, the expectation of the individual total-effect function is positive, namely .15

(see Exercise 1-15).

1.1.6 How to evaluate the treatment?

The conclusions drawn from the prima facie effect

PFE10 = P (Y =1 |X =1)−P (Y =1 |X =0)

and from the individual effects

ITEU ;10(u) = P (Y =1 |X =1,U=u)−P (Y =1 |X =0,U=u)
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Table 1.5. Random experiment of a two-factorial nonorthogonal design

U Z P
(U

=
u

)

P
(X

=
1
|U

=
u

)

P
(X

=
2
|U

=
u

)

E
(Y

|U
=

u
,X

=
0

)

E
(Y

|U
=

u
,X

=
1

)

E
(Y

|U
=

u
,X

=
2

)

Tom low 1/8 10/60 3/60 120 100 80

Tim low 1/8 18/60 9/60 120 100 80

Joe med 1/8 26/60 17/60 90 90 70

Jim med 1/8 26/60 17/60 100 100 80

Ann med 1/8 26/60 17/60 120 100 100

Eva med 1/8 26/60 17/60 130 110 110

Sue hi 1/8 12/60 44/60 60 100 140

Mia hi 1/8 16/60 36/60 60 100 140

are contradictory. Which of these comparisons should we trust? Is the treatment harmful

as P (Y =1 |X =1)−P (Y =1 |X =0) = −.18 suggests? Or is it beneficial as suggested by the

two positive differences P (Y =1 |X =1,U=u)−P (Y =1 |X =0,U=u)? Which of these com-

parisons are meaningful for evaluating the causal total effect of the treatment on the suc-

cess variable Y ? Before we come back to these questions, we consider another example.

1.2 Example 2 — Nonorthogonal Two-Factorial Experiment

In this section, we treat an example with three treatment conditions, representing two

treatments and a control, for instance. Furthermore, there are a discrete covariate with

three values, representing, for example, educational status, and a quantitative outcome

variable, indicating the degree of success, for instance.1 The relevant parameters of this

random experiment are displayed in Table 1.5. For this example to be realistic, we have

to assume that there is still variation of Y in each combination of person and treatment

condition. This conditional variance may be due to (a) measurement error, but also to (b)

mediator effects, that is, effects of variables and events that are in between X and the out-

come variable Y in the process considered. Because Y is quantitative and is subject to

measurement error and mediator effects, a full table similar to Table 1.2 with all possible

1 In this example, we consider a (3×3)-factorial design with crossed, non-orthogonal factors. The analysis of

such designs has been puzzling many statisticians (see, e. g., Aitkin, 1978; Appelbaum & Cramer, 1974; Carlson

& Timm, 1974; Gosslee & Lucas, 1965; Jennings & Green, 1984; Keren & Lewis, 1976; Kramer, 1955; Overall &

Spiegel, 1969, 1973b, 1973a; Overall, Spiegel, & Cohen, 1975; Williams, 1972), and it continues to do so (see, e. g.,

Langsrud, 2003; Nelder & Lane, 1995). In fact, none of the statistical packages such as SAS, SysStat, or SPSS with

their Type I, II, III or IV sums of squares provide correct estimates and tests of the average effects (or main effects)

for such a design unless the second factor has a uniform distribution, with equal probabilities for all values of

the second factor. In this case Type III analysis yields correct results, at least, if the second factor is assumed

to be fixed. However, in most applications in the social sciences, the second factor is not fixed but stochastic

with varying sample means and sample variances, for instance. In chapter ??, we will outline a correct analysis

including average total effects.text
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Table 1.6. Conditional expectation values of the outcome variable given treatments

Treatment condition E(Y |X=x ) P(X=x )

X = 0 (Control) 111.25 1/3

X =1 (Treatment 1) 100 1/3

X =2 (Treatment 2) 114.25 1/3

E(Y ) 108.5

outcomes, including those given person and treatment condition would be too large. It

even may not exist if Y is actually continuous, which would be true if we would assume,

for example, that Y has a normal distribution given the combination of a person u and a

treatment condition x.

Nevertheless, it is still possible to present a compressed table that is analog to Table

1.1. Aside from the sampling probabilities for the eight persons and their person-specific

probabilities of being assigned to treatment 1, this table contains the person-specific con-

ditional expectation values E (Y |X=x,U=u) of Y in both treatment conditions, X =0 and

X =1. Such conditional expectation values have also been presented in Table 1.1 because

the conditional probabilities P (Y =1 |X=x,U=u) shown in that table are identical to the

conditional expectation values E (Y |X=x,U=u) if Y is binary with values 0 and 1 (see SN-

Remark 9.8).

1.2.1 Prima facie effects

The conditional expectation values of the outcome variable Y given the three treatment

conditions x are displayed in Table 1.6. The ratios in the last column are the treatment

probabilities P (X=x), which are P (X=x) = 1/3 for all three values x of X . Note that this is

not a randomized design as will become obvious if we look at the second factor Z and the

joint probabilities of X and Z (see Table 1.7). Furthermore, considering the conditional ex-

pectation values, and not the sample means, should make clear that we are not discussing

statistical inference (i. e., inference from sample statistics to true parameters), but causal

inference, that is, inference from the conditional expectation values such as E (Y |X=x) or

E (Y |X=x, Z=z) to causal effects.

If our evaluation of the treatment effects were based on the differences between the

conditional expectation values E (Y |X=x) of Y in the three treatment conditions x, then

we would conclude that there is a negative effect of treatment 1 compared to control,

namely,

E (Y |X =1) − E (Y |X =0) = 100−111.25 = −11.25,

and a positive effect of treatment 2 compared to control, namely,

E (Y |X=2) − E (Y |X =0) = 114.25−111.25 = 3

(see Exercise 1-16).
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Table 1.7. Conditional expectation values E(Y |X=x , Z=z) given treatment and status

Status

Treatment Low (Z=0) Medium (Z=1) High (Z=2)

X = 0 120 (20/120) 110 (17/120) 60 (3/120) (40/120)

X =1 100 (7/120) 100 (26/120) 100 (7/120) (40/120)

X =2 80 (3/120) 90 (17/120) 140 (20/120) (40/120)

(30/120) (60/120) (30/120)

Note. Probabilities P(X=x , Z=z), P(Z=z), and P(X=x ) in parentheses.

1.2.2 Prima facie effects controlling for the qualitative covariate Z

A second attempt to evaluate the ‘effects’ of the treatment is to look at the differences

between the conditional expectation values of Y in the three treatment conditions given

one of the three values of Z : low, medium, and high. Note that these (Z=z)-conditional

effects are also called simple effects in the literature on analysis of variance.

Table 1.7 displays the conditional expectation values of the outcome variable Y in the

nine cells of the (3×3)-design. The ratios in parentheses are the probabilities that the pairs

(x, z) of values of X and Z are observed. Hence, this table contains the conditional expec-

tation values (true cell means) E (Y |X=x , Z=z) of the outcome variable Y , and the joint

probabilities P (X=x, Z=z) determining the true joint distribution of X and Z .2

In the low status condition (Z =0), there are large negative effects, both of treatment 1

and of treatment 2 compared to the control:

PFEZ ;10(0) = E (Y |X=1, Z=0) − E (Y |X=0, Z=0) = 100 − 120 = −20

and

PFEZ ;20(0) = E (Y |X=2, Z=0) − E (Y |X=0, Z=0) = 80 − 120 = −40.

In the medium status condition (Z =1), there are also negative effects of treatment 1 and

of treatment 2 compared to the control:

PFEZ ;10(1) = E (Y |X=1, Z=1) − E (Y |X=0, Z=1) = 100 − 110 = −10

and

PFEZ ;20(1) = E (Y |X=2, Z=1) − E (Y |X=0, Z=1) = 90 − 110 = −20.

Finally, in the high status condition (Z =2), the effects of treatment 1 and treatment 2 are

both positive:

PFEZ ;10(2) := E (Y |X=1, Z=2) − E (Y |X =0, Z=2) = 100 − 60 = 40

and

PFEZ ;20(2) := E (Y |X=2, Z=2) − E (Y |X =0, Z=2) = 140 − 60 = 80.

Based on these comparisons, we can conclude that the ‘effects’ of the treatments depend

on the status of the subjects: the differences between the expectations of Y are negative

for subjects with low and medium status, and they are positive for the subjects with high

status.

2 In this context, ‘true’ just indicates that we are not referring to sample means or relative frequencies in a sample.

Instead these are the true means around which sample means would fluctuate.
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1.2.3 Individual effects

In this fictive example we can also look at the individual effects of treatment 1 compared

to control and treatment 2 compared to control. These both effects can be read from Table

1.5 for each person. For example, for Tom the individual effect of treatment 1 compared to

control is

ITEU ;10(Tom ) = E (Y |X =1,Tom )−E (Y |X =0,Tom ) = 100−120 = −20,

and his individual effect of treatment 2 compared to control is

ITEU ;20(Tom ) = E (Y |X =1,Tom )−E (Y |X =0,Tom ) = 80−120 = −40.

Correspondingly, for Joe the individual effect of treatment 1 compared to control is

ITEU ;10( Joe ) = E (Y |X =1, Joe )−E (Y |X =0, Joe ) = 90−90 = 0,

and his individual effect of treatment 2 compared to control is

ITEU ;20( Joe ) = E (Y |X =1, Joe )−E (Y |X =0, Joe ) = 70−90 = −20.

For the reasons mentioned in section 1.1.1, unlike the (Z=z)-conditional effects treated in

section 1.2.2, the individual effects usually cannot be estimated in empirical applications.

Nevertheless, they will play a crucial role in the definition of causal effects.

1.2.4 Average of the individual effects

Of course, individual effects are more informative than average treatment effects if we

want to know which treatment is the best for which individual. Nevertheless, we might

ask: What are the total treatment effects on average? And we can ask: If the total individ-

ual effects cannot be estimated in empirical applications under realistic assumptions, is it

possible to estimate at least the total average effects? And if yes, under which conditions?

Note that we have two average effects in this example, because we can compare treat-

ment 1 to control and treatment 2 to control. Because we already looked at the correspond-

ing individual effects, we just have to compute their averages, that is, the expectations of

these conditional effects over the distribution of the person variable U , that is,

E
(

ITEU ;10(U )
)

=
∑

u

ITEU ;10(u) ·P (U=u)

= (100−120) ·
1

8
+ (100−120) ·

1

8
+ (90−90) ·

1

8
+ . . .+ (100−60) ·

1

8
= 0.

Hence, the average total effect of treatment 1 compared to the control is 0. Comparing

treatment 2 to control yields

E
(

ITEU ;20(U )
)

=
∑

u

ITEU ;20(u) ·P (U=u)

= (80−120) ·
1

8
+ (80−120) ·

1

8
+ (70−90) ·

1

8
+ . . .+ (140−60) ·

1

8
= 0.

According to this result, the average total effect of treatment 2 compared to the control is

0 as well.
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Figure 1.4. Conditional expectation values of Y given treatment and status

1.2.5 Average of the (Z =z)-conditional total effects

Now we consider the average of the (Z=z)-conditional total effects, where Z is the quali-

tative covariate status. Note that in analysis of variance with equal cell sizes, the averages

of (Z=z)-conditional total effects are called the main effects.3

Because we already looked at the corresponding (Z=z)-conditional total effects (see

section 1.2.2), we just have to compute their averages, more precisely, the expectations of

these conditional effects over the distribution of status:

E
(

PFEZ ;10(Z )
)

=
∑

z

PFEZ ;10(z) ·P (Z=z) = (−20) ·
1

4
+ (−10) ·

1

2
+40 ·

1

4
= 0.

Hence, the average effect of treatment 1 compared to the control is 0.

Comparing treatment 2 to control yields the average effect:

E
(

PFEZ ;20(Z )
)

=
∑

z

PFEZ ;20(z) ·P (Z=z) = (−40) ·
1

4
+ (−20) ·

1

2
+80 ·

1

4
= 0.

According to this result, the average effect of treatment 2 compared to the control is 0

as well. Hence, in this example, these averages of the (Z=z)-conditional total effects are

identical to the averages of the individual total effects. Is this just a coincidence? Or is this

due to systematic conditions that hold in this example? If yes, which are these conditions?

In chapters 6 to ?? we will provide the general answers.

3 Note that we assume that Z is a random variable. In contrast, in analysis of variance it is assumed that Z is

a fixed factor with a fixed number of observations for each value z of Z , that is, these numbers of observations

are assumed to be invariant across different samples. In many empirical applications, this assumption is not

realistic, but it does not invalidate the statistical conclusions as long as the parameters of interest do not involve

the distribution of Z . However, a hypothesis about the average total effect does involve the distribution of Z ,

and this is the reason why programs on analysis of variance usually are not able to correctly estimate and test

hypotheses about average total effects. For more details see section chapter ?? ??? RST.
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1.2.6 How to evaluate the treatment?

To summarize, we discussed three ways that may, at first sight, be used to evaluate the

treatment effects in empirical applications: First, we may compare the differences be-

tween the conditional expectation values E (Y |X=x) of the outcome variable in the three

treatment conditions x=0, x=1, and x=2. Second, we may consider the corresponding

differences between the conditional expectation values E (Y |X=x, Z=z) given each of the

three values z=0, z=1, and z=2 of status. Third, we may compare the expectations of these

differences between the (X=x, Z=z)-conditional expectation values over the distribution

of Z (see Box 1.1 for a summary of these effects).4 All these comparisons yield different

results. Which of them are meaningful for the evaluation of the treatment effects? All three

of them, or only two, just one, or none at all? And if one or more of these comparisons are

meaningful, which assumptions are necessary allowing for causal interpretations?

1.3 Summary and Conclusion

In this chapter, we treated two examples. In the first one, a dichotomous treatment vari-

able X has a negative (prima facie) effect P (Y =1 |X =1) − P (Y =1 |X =0) on a dichotomous

outcome variable Y (‘success’), although the corresponding individual treatment effects

P (Y =1 |X =1,U =Joe )−P (Y =1 |X =1,U =Ann )

are positive. Taking the expectation of these two individual effects also yielded a positive

effect. In the second example, there are nonzero differences E (Y |X =1) − E (Y |X =0) and

E (Y |X=2) − E (Y |X =0), where Y is a quantitative outcome variable, and nonzero condi-

tional ‘effects’ E (Y |X =1, Z=z) − E (Y |X =0, Z=z) and E (Y |X=2, Z=z) − E (Y |X =0, Z=z)

for the different levels z of status. The expectations of these (Z=z)-conditional ‘effects’

(comparing treatment 1 to 0 and comparing treatment 2 to 0) over the three status condi-

tions, that is, the two ‘average total effects’, are zero.

The problem

Because the conclusions drawn in each of these analyses are contradictory, which of

these should we trust? In the first example: Is the treatment harmful — as the difference

P (Y =1 |X =1) − P (Y =1 |X =0) suggests? Or is it beneficial as suggested by the individual

effects P (Y =1 |X =1,U=u) − P (Y =1 |X =1,U=u)? In the second example: Do the prima

facie effects E (Y | X =1) − E (Y | X =0) have a meaningful causal interpretation? Or do the

(Z=z)-conditional prima facie effects E (Y | X =1, Z=z) − E (Y | X =0, Z=z) have a mean-

ingful causal interpretation? And, does this apply also to their expectation?

In the first example, we demonstrated that we can not expect that the difference

P (Y =1 |X =1)−P (Y =1 |X =0)

is the average (expectation) of the corresponding person-specific differences

4 In fact, there are even more than three ways. Types II and III of computing the sums of squares in nonorthogonal

ANOVA are not yet considered in our discussion. In chapter ??, we show that all four types of computing sums of

squares in such a design yield wrong results in our example (see also Exercise 1-17).
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Box 1.1 Various total effects treated in this chapter

PFExx ′ Prima facie effect of treatment x compared to treatment x ′. It is defined

by

PFExx ′ := E(Y |X=x )−E(Y |X =x ′) .

PFEZ ; xx ′ (z) (Z=z)-conditional prima facie effect of treatment x compared to treat-

ment x ′. It is defined by

PFE Z ; xx ′ (z) := E(Y |X=x , Z=z)−E(Y |X =x ′, Z=z) .

E
(

PFEZ ;xx ′ (Z )
)

Expectation of the (Z=z)-conditional prima facie effects of treatment x

compared to treatment x ′. If Z is discrete, then it is defined by

E
(

PFE Z ; xx ′ (Z )
)

:=
∑

z
PFEZ ;xx ′ (z) ·P(Z=z ).

ITEU ;xx ′(u) Individual effect of treatment x compared to treatment x ′. It is defined by

ITEU ;xx ′(u) := E(Y |X=x ,U=u)−E(Y |X =x ′,U=u) .

E
(

ITEU ; xx ′(U )
)

Expectation of the individual effects of treatment x compared to treat-

ment x ′. It is defined by

E
(

ITEU ; xx ′(U )
)

:=
∑

u
ITEU ;xx ′(u) ·P(U=u ).

P (Y =1 |X =1,U=u)−P (Y =1 |X =0,U=u) .

Similarly, in the second example, we showed that we can not expect that the difference

E (Y |X =1)−E (Y |X =0)

is the average (expectation) of the corresponding differences

E (Y |X =1, Z=z)−E (Y |X =0, Z=z)

given a value z of status. And, how do we know that these (Z=z)-conditional effects are

meaningful for the evaluation of the treatment? As noted before, these questions are not

related to statistical inference; they are not raised at the sample level, but on the level of

true conditional expectation values!

Hence our examples show that conditional expectation values and their differences,

the prima facie effects, can be totally misleading in evaluating the effects of a treatment

variable X on an outcome variable Y . This conclusion can also be extended to conditional

probabilities, to correlations and to all other parameters describing relationships and de-

pendencies between random variables. They all are like the shadow in the metaphor of the

invisible man (see the preface).

If this is true, is the whole idea of learning from experience — the core of empirical

sciences — wrong? Our answer is ‘No’. However, we have to be more explicit in what we
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mean by terms like ‘X affects Y ’, ‘X has an effect on Y ’, ‘X influences Y ’, ‘X leads to Y ’,

and so on used in our theories and hypotheses. How can these terms be uniquely defined

in a language that is compatible with statistical analyses of empirical data? How to design

an empirical study and how to look at the resulting data if we want to probe our theories

and learn about the causal effects postulated in these theories and hypotheses?

In the chapters to come we will show that these parameters are meaningful under cer-

tain conditions, just like the shadow of the invisible man can be meaningful under cer-

tain conditions in order to measure his height. In the metaphor a crucial condition is the

45° angle of the sun. Do we also have such a crucial condition for causal inference? We

know that a reversal of total effects does not occur in randomized experiments, that is, in

experiments in which observational units (in the social and behavioral sciences, usually

the subjects or individuals) are randomly assigned to one of at least two treatment condi-

tions. In the randomized experiment comparing conditional expectation values is infor-

mative about total causal treatment effects. But why? What is so special in the randomized

experiment? Which are the mathematical conditions that we create in a randomized ex-

periment? Are there also conditions that can be utilized in quasi-experimental evaluation

studies? How can we estimate causal effects in quasi-experiments? Obviously, conclusive

answers to these questions can be hoped for only within a theory of causal effects.

Relevance of the problem

Obviously, these questions are of fundamental importance for the methodology of empir-

ical sciences and for the empirical sciences themselves. The answers to these questions

have consequences for the design and analysis of experiments, quasi-experiments, and

other studies aiming at estimating the effects of treatments, interventions, or expositions.

No prevention study can meaningfully be conducted and analyzed without knowing the

concepts of causal effects and how they can be estimated from empirical data. Similarly,

without a clear concept of causal effects we are not able to learn from our data about the

effects of a certain (possibly harmful) environment on our health, or about the effects of

certain behaviors such as smoking or drug abuse. Again, this is similar to the problem of

measuring the invisible man’s size via the length of his shadow: only with a clear concept

of size, some basic knowledge in geometry, and the additional information such as the an-

gle of the sun at the time of measurement are we able to determine his size from the length

of his shadow.

Research traditions

Of course, raising these questions and attempting answers is not new. Immense knowl-

edge and wisdom about experiments and quasi-experiments has been collected in the

Campbellian tradition of experiments and quasi-experiments (see, e. g., Campbell & Stan-

ley, 1963; T. D. Cook & Campbell, 1979; Shadish et al., 2002). In the last decades, a more

formal approach has been developed supplementing the Campbellian theory and termi-

nology in important aspects: the theory of causal effects in the Neyman-Rubin tradition

(see, e. g., Splawa-Neyman, 1923/1990; Rubin, 1974, 2005). Many papers and books indi-

cate the growing influence of this theory (see, e. g., Greenland, 2000, 2004; Höfler, 2005;

Rosenbaum, 2002a; Rubin, 2006; Winship & Morgan, 1999; Morgan & Winship, 2007) and

remarkable efforts have already been made to integrate it into the Campbellian framework
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(West, Biesanz, & Pitts, 2000). Furthermore, these questions have also been dealt with in

the graphical modeling tradition (see, e. g., Pearl, 2009; Spirtes et al., 2000) as well as in

biometrics, econometrics, psychometrics, epidemiology, and other fields dealing with the

methodology of empirical research.

Outlook

In this volume, we present the theory of causal total effects in terms of classical probability

theory. We show that a number of questions that have been debated controversially and

inconclusively can now be given a clear-cut answer. What kinds of causal effects can mean-

ingfully be defined? Which design techniques allow for unbiased estimation of causal ef-

fects? How to analyze nonorthogonal ANOVA designs (cf., e. g., Aitkin, 1978; Appelbaum

& Cramer, 1974; Gosslee & Lucas, 1965; Maxwell & Delaney, 2004; Overall et al., 1975)?

How to analyze non-equivalent control-group designs (cf., e. g., Reichardt, 1979)? Should

we compare pre-post differences between treatment groups (cf., e. g., Lord, 1967; Senn,

2006; van Breukelen, 2006; Wainer, 1991)? Should we use analysis of covariance to ad-

just for differences between treatment and control that already existed prior to treatment

(cf., e. g., Maxwell & Delaney, 2004; Cohen, Cohen, West, & Aiken, 2003)? Should we use

propensity score methods instead of the more traditional procedures mentioned above

(cf., e. g., Rosenbaum & Rubin, 1983b)? How do we deal with non-compliance to treatment

assignment (cf., e. g., Cheng & Small, 2006; Dunn et al., 2003; Jo, 2002a, 2002b, 2002c; Jo,

Asparouhov, Muthén, Ialongo, & Brown, 2008; J. Robins & Rotnitzky, 2004; J. M. Robins,

1998)?

We do not treat the statistical sampling models with their distributional assumptions,

their implications for parameter estimation, and the evaluation (or tests) of hypotheses

about these parameters. However, we will discuss the virtues and problems of general

strategies of data analysis such as the analysis of difference scores, analysis of covariance,

its generalizations, and analysis based on propensity scores.

1.4 Exercises

⊲ Exercise 1-1 Why do we need the concept of a causal treatment effect?

⊲ Exercise 1-2 What is the relationship between the unconditional prima facie effect PFE10 and the

expectations E(Y |X = 0) and E(Y |X =1) of the outcome variable Y in the two treatment conditions?

⊲ Exercise 1-3 Verify that Table 1.3 is in fact obtained by collapsing the two corresponding tables

for Joe and Ann (see Table 1.4). RST ???

⊲ Exercise 1-4 Which are the kinds of prima facie effects treated in this chapter?

⊲ Exercise 1-5 What is the difference between statistical inference and causal inference?

⊲ Exercise 1-6 Why are the conditional expectation values E(Y |X=x ) in treatment conditions x

also the (X=x )-conditional probabilities for the event {Y =1} in the first example treated in this chap-

ter?

⊲ Exercise 1-7 Download K-book table 1.1.sav from www.causal-effects.de. This data set has been

generated from Table 1.1 for a sample of size N = 10,000. Compute the contingency table corre-

sponding to Table 1.3 and the associated estimates of the conditional probabilities P(Y =1 |X = 0)

and P(Y =1 |X =1).
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⊲ Exercise 1-8 Use P(Y =1 |X =1) = .42 and P(Y =1 |X =0) = .6 computed in section 1.1.3 in order to

compute the corresponding odds ratio, its logarithm, and the risk ratio, according to the definitions

of these parameters presented in SN-Remarks 13.14 to 13.16.

⊲ Exercise 1-9 Compute the conditional probability P(Y =1 |X =1,U=Joe ) from Table 1.4.

⊲ Exercise 1-10 Compute the probability P(Y =1 |X =0) from the corresponding conditional prob-

abilities P(Y =1 |X = 0,U=u).

⊲ Exercise 1-11 What (i.e., how big) are the unconditional prima facie effects of the treatments,

that is, the prima facie effects E(Y |X =1)−E(Y |X = 0) and E(Y |X =2)−E(Y |X = 0) in the second

example of this chapter?

⊲ Exercise 1-12 What are the conditional prima facie effects of the treatments, that is, the prima fa-

cie effects E(Y |X =1, Z=z)−E(Y |X = 0, Z=z) and E(Y |X =2, Z=z)−E(Y |X = 0, Z=z) in the second

example of this chapter?

⊲ Exercise 1-13 What are the averages of the conditional prima facie effects

E(Y |X =1, Z=z) − E(Y |X = 0, Z=z) and E(Y |X =2, Z=z) − E(Y |X = 0, Z=z)

in the second example of this chapter?

⊲ Exercise 1-14 Compute the conditional probability P(U=Tom | X = 0) from the parameters pre-

sented in Tables 1.5 and 1.6.

⊲ Exercise 1-15 Open the Causal Effects Xplorer with table K-book table 1.1.tab. Change the condi-

tional probabilities P(X =1 |U=u) of receiving treatment 1 for Joe and Ann to 2/5. Then compare the

two individual treatment effects of Joe and Ann and their average to the prima facie effect E(Y |X =1)

−E(Y |X = 0).

⊲ Exercise 1-16 Open the Causal Effects Xplorer with table K-book table 1.1.tab displaying the con-

ditional probabilities P(U=u |X=x ). Then use SN-Box 9.2 (ii) in order to compute the three condi-

tional expectation values E(Y |X=x ) displayed in Table 1.6 from the parameters presented in Table

1.5.

⊲ Exercise 1-17 Download K-book table 1.5.sav from www.causal-effects.de. This data set has been

generated (with the Causal Effects Xplorer) from Table 1.5 for a sample of size N = 10,000 with error

variance 10 given each person.

(a) Compute the cell means and the relative frequencies of observations in each of the nine cells

of the (3×3)-table.

(b) Use each of the procedures offered by your statistical program package to analyze the data

including a test of the main effects of the treatment factor (most programs offer Typ I, II and

III sums of squares for such an analysis).

(c) Compare the results of these analyses to the parameters presented in Table 1.7.

Solutions

⊲ Solution 1-1 We need the concept of a causal treatment effect, because the two examples show

that differences between conditional expectation values are meaningless for the evaluation of the ef-

fects of a treatment, unless we can show how the differences between these conditional expectation

values are related to the causal treatment effects. Obviously, without a definition of causal treatment

effects this is be possible. Estimating causal treatment effects is crucial for answering questions such

as ‘Does the treatment help our patients with respect to the outcome variable considered?’
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⊲ Solution 1-2 The unconditional prima facie effect PFE10 is defined as the difference between the

two conditional expectation values E(Y |X =1) and E(Y |X = 0).

⊲ Solution 1-3 This can easily be verified by adding the probabilities for the observations of the

pairs (x, z) of X and Z over males and females. This yields .144 + .096 = .240, .004 + .228 = .232,

.336+ .024 = .360 and .016+ .152 = .168.

⊲ Solution 1-4 The two kinds of prima facie effects treated in this chapter are: the unconditional

prima facie effect, and the conditional prima facie effect given the value z of a potential confounder

Z . The unconditional prima facie effect of treatment 1 compared to treatment 0 is the difference

PFE10 = E(Y |X =1)−E(Y |X = 0) between the conditional expectation values of an outcome variable

Y given the two treatment conditions. The (Z=z)-conditional prima facie effect is the difference

PFEZ ;10(z) = E(Y |X =1, Z=z) − E(Y |X =0, Z=z) between the (X =1, Z=z)-conditional expectation

value and the (X = 0, Z=z)-conditional expectation value of the outcome variable Y .

⊲ Solution 1-5 In statistical inference we estimate and test hypotheses about parameters charac-

terizing the (joint or marginal) distributions of random variables from sample data. In causal infer-

ence we interpret some of these parameters as causal effects, provided that certain conditions are

satisfied that allow for such a causal interpretation.

⊲ Solution 1-6 E(Y |X=x ) = P(Y =1 |X=x ), because, in this example, Y is dichotomous with values

0 and 1. In this case, the term P(Y =1 |X=x ) is defined by E(Y |X=x ) (see SN-Remark 9.8).

⊲ Solution 1-7 No solution provided. Just compare your results to the true parameters presented in

Table 1.3 and to the conditional probabilities P(Y =1 |X = 0) and P(Y =1 |X =1) presented in section

1.1.3.

⊲ Solution 1-8 The odds ratio is

P(Y =1|X =1)

1−P(Y =1|X =1)

/ P(Y =1|X = 0)

1−P(Y =1|X = 0)
≈ .483.

Because this number is smaller than 1 it indicates that there is a negative effect of the treatment. The

natural logarithm of the odds ratio is the log odds ratio, which is

ln

[

P(Y =1|X =1)

1−P(Y =1|X =1)

/ P(Y =1|X = 0)

1−P(Y =1|X = 0)

]

≈ −0.728.

This number is smaller than 0 indicating that there is a negative effect of the treatment. The log odds

ratio is identical to the logistic regression coefficient λ1 in the equation

P(Y =1|X ) =
exp(λ0 +λ1 ·X )

1+exp(λ0 +λ1 ·X )
.

Another closely related parameter is the risk ratio

P(Y =1|X =1)

P(Y =1|X = 0)
= .7.

Because this number is smaller than 1, it indicates that there is a negative effect of the treatment.

Hence, no matter which of these parameters we use, we would always come to the same (wrong)

conclusion that the treatment is detrimental for our patients.

⊲ Solution 1-9 Using the joint probabilities presented in Table 1.4, the definition of the conditional

probability P(Y =1 |X =1,U=Joe )

P(Y =1 |X =1,U=Joe ) =
P(X =1,Y =1,U=Joe )

P(X =1,U=Joe )
=

.016

.016+ .004
= .8.
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⊲ Solution 1-10 First of all, note that the theorem of total probability [see SN-Th. 4.25 (ii)], can also

be applied to conditional probabilities (see SN-Th. 4.28), in this exercise, the (X = 0)-conditional

probabilities. Hence, according to this theorem,

P(Y =1 |X =0) = P(Y =1 |X = 0,U=Joe ) ·P(U=Joe |X = 0) +

P(Y =1 |X = 0,U =Ann ) ·P(U =Ann |X = 0).

The probabilities P(Y =1 |X = 0,U=Joe ) = .7 and P(Y =1 |X = 0,U =Ann ) = .2 are computed analo-

gously to Exercise 1-9 and the other two probabilities occurring in this formula are P(U=Joe |X = 0) =

.48/.6 and P(U =Ann |X = 0) = .12/.6 (see Table 1.4). Hence,

P(Y =1 |X =0) =
.7 · .48

.6
+

.2 · .12

.6
= .6.

⊲ Solution 1-11 The prima facie effects E(Y |X =1)−E(Y |X = 0) and E(Y |X =2)−E(Y |X = 0) can

be computed from Table 1.6. They are as follows:

PFE10 = E(Y |X =1)−E(Y |X = 0) = 100.00−111.25 = −11.25

and

PFE20 = E(Y |X =2)−E(Y |X = 0) = 114.25−111.25 = 3.00.

⊲ Solution 1-12 The conditional prima facie effects

E(Y |X =1, Z=z)−E(Y |X = 0, Z=z) and E(Y |X =2, Z=z)−E(Y |X = 0, Z=z)

can be computed from Table 1.7. For low status (Z=0), they are:

PFEZ ;10(0) = E(Y |X =1, Z=0)−E(Y |X =0, Z=0) = 100−120 = −20

PFEZ ;20(0) = E(Y |X =2, Z=0)−E(Y |X =0, Z=0) = 80−120 = −40.

For medium status (Z=1), they are:

PFEZ ;10(1) = E(Y |X =1, Z=1)−E(Y |X =0, Z=1) = 100−110 = −10

PFE Z ;20(1) = E(Y |X =2, Z=1)−E(Y |X =0, Z=1) = 90−110 = −20.

Finally, for high status (Z=2), the conditional prima facie effects are:

PFEZ ;10(2) = E(Y |X =1, Z=2)−E(Y |X = 0, Z=2) = 100−60 = 40

PFEZ ;20(2) = E(Y |X =2, Z=2)−E(Y |X = 0, Z=2) = 140−60 = 80.

⊲ Solution 1-13 Using the results of the last exercise, the average of the (Z=z)-conditional prima

facie effects can be computed from the conditional effects as follows:

E
(

PFE Z ;10(Z )
)

= PFE Z ;10(0) ·P(Z=0)+PFE Z ;10(1) ·P(Z=1)+PFE Z ;10(2) ·P(Z=2)

= (−20) ·
1

4
+ (−10) ·

1

2
+40 ·

1

4
= 0.

E
(

PFE Z ;20(Z )
)

= PFEZ ;20(0) ·P(Z=0)+PFE Z ;20(1) ·P(Z=1)+PFE Z ;20(2) ·P(Z=2)

= (−40) ·
1

4
+ (−20) ·

1

2
+80 ·

1

4
= 0.

⊲ Solution 1-14

P(U=Tom | X = 0) =
P(U=Tom , X = 0)

P(X = 0)
=

P(X = 0 |U=Tom ) ·P(U=Tom )

P(X =1)

=
(47/60) · (1/8)

1/3
=

47

160
.
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⊲ Solution 1-15 With this change, the prima facie effect changes to E(Y |X =1) −E(Y |X = 0) = .6−

.45 = .15, which is the average of the two individual total effects, which still are .10 for Joe and .20 for

Ann. Note that identical treatment probabilities P(X =1 |U=u) for all persons u is what we create by

randomly assigning a person to treatment 1 in a randomized experiment.

⊲ Solution 1-16 Rewriting SN-Box 9.2 (ii) for our example,

E(Y |X=x ) =
∑

u
E(Y |X=x ,U=u) ·P(U=u |X=x).

Hence,

E(Y | X = 0) =
∑

u
E(Y |X = 0,U=u) ·P(U=u |X = 0)

= 120 ·
47

160
+120 ·

33

160
+ . . .+60 ·

8

160
= 111.25,

E(Y | X =1) =
∑

u
E(Y |X =1,U=u) ·P(U=u |X =1)

= 100 ·
10

160
+100 ·

18

160
+ . . .+100 ·

16

160
= 100,

and

E(Y | X =2) =
∑

u
E(Y |X =2,U=u) ·P(U=u |X =2)

= 80 ·
3

160
+80 ·

9

160
+ . . .+140 ·

36

160
= 114.25.

⊲ Solution 1-17 No solution provided. Just compare your results to the parameters presented in

Table 1.7.





Chapter 2

Some Typical Kinds of Random Experiments

RST: 28. Febr. 2019

Einige Stellen sind noch mit RST markiert. Hier fehlt noch eine Entscheidung, ob auch

kausale Effekte einer pre-treatment variable auf X und Y betrachtet werden sollen. Nur

wenn in spaeteren Kapiteln explizit solche Beispiele behandelt werden.

In chapter 1 we have shown that comparing conditional expectation values of an out-

come variable between treatment groups can be completely misleading if used for the

evaluation of treatment effects. In this chapter we continue preparing the stage for the the-

ory of causal total effects, describing the kind of empirical phenomena it refers to: single-

unit trials of experiments or quasi-experiments, but also single-unit trials of observational

studies in which causal total effects and dependencies can be investigated. First examples

of such a single-unit trial have already been treated in sections 1.1 and 1.2 of chapter 1.

A single-unit trial is a specific random experiment. Note the distinction between a ran-

dom experiment and a randomized experiment. Stochastic dependencies between events

and between random variables always refer to a random experiment, but not necessarily

to a randomized experiment in which a subject is assigned to one of the treatment con-

ditions by a randomization procedure. In the simplest case of such a randomization we

assign the subject to treatment or control according to the outcome of flipping a coin. In

contrast, a random experiment is the concrete empirical phenomenon to which stochastic

dependencies between events and random variables (described by conditional distribu-

tions, probabilities, correlations, and conditional expectations) refer to.

The single-unit trial is not the sample dealt with in statistical models. In a sample, we

consider repeating the single-unit trial many times in one way or another. This is neces-

sary if we want to deal with estimation of parameters and tests of hypotheses about these

parameters, some of which might be causal effects. The single-unit trial does not allow

treating problems of parameter estimation or hypothesis testing. However, it is sufficient

for defining causal effects and studying how to identify them, that is, investigating under

which conditions and how they can be computed from empirically estimable parameters.

A single-unit trial is also what we refer to in hypotheses and theories of the empirical

sciences. In many text books on applied statistics the dazzling term ‘population’ is used

instead, obfuscating what we are actually talking about when we use probabilistic terms

such as expectation, variance, covariance, regression, etc. Furthermore, single-unit trials

are what is of interest in practical work. How does the treatment of a patient affect the out-

come of this patient if compared to another possible treatment? What is the treatment ef-

fect for a male, and what is its effect for a female? Which variables explain inter-individual

differences in individual causal effects? All these questions are raised using concepts re-

ferring to a single-unit trial.
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Overview

We start with the single-unit trial of simple experiments and then treat increasingly more

complex ones introducing additional design features. Specifically, we will introduce the

single-unit trials of experiments and quasi-experiments with fallible covariates, a multi-

factorial design with more than one treatment, multilevel experiments and quasi-experi-

ments, and experiments and quasi-experiments with latent covariates and/or outcome

variables.

We also discuss different kinds of random variables that will play a crucial role in the

chapters to come. Among these random variables are the observational-unit variable,

manifest and latent covariates, treatment variables, as well as manifest and latent out-

come variables. In this chapter, we confine ourselves to an informal description of single-

unit trials and the random variables involved, preparing the stage for their mathematical

representations in the following chapters.

2.1 Simple Experiments

As a first class of random experiments we consider the single-unit trials of simple experi-

ments and quasi-experiments. Such single-unit trials are experiments and quasi-experiments

in which no fallible covariates are assessed.

Such a single-unit trial consists of:

(a) sampling an observational unit u (e. g., a person) from a set of units,

(b) assigning the unit or observing its assignment to one of several experimental condi-

tions (represented by the value x of the treatment variable X ),

(c) recording the value y of the outcome (or response) variable Y .

Figure 2.1 displays a tree representation of the set of possible outcomes of this single-unit

trial. Note that this is the kind of random experiment we considered in the Joe-Ann exam-

ple presented in section 1.1 and in the two-factorial design example treated in section 1.2.

The random variables X (treatment), Y (success), and Z (status), the conditional expecta-

tion values E (Y |X=x) and E (Y |X=x , Z=z), as well as the probabilities P (X=x), P (Z=z),

P (X=x, Z=z) all referred to such a single-unit trial. Of course, all these conditional expec-

tation values and probabilities are unknown in empirical applications. Nevertheless, they

are the parameters that determine the outcome of the single-unit trial, just in the same

way as the probability of tossing heads determines the outcome of flipping a coin.

In order to illustrate this point, imagine flipping a deformed coin that has the shape

of a Chinese wok, and suppose that in this case the probability of flipping heads is .80

instead of .50. Although this probability does not deterministically determine the outcome

of flipping the coin, it stochastically determines the outcome.

In fact, we may consider the single-unit trial of (a) sampling a coin u from a set of coins,

(b) forming (X =1) or not forming (X =0) a wok out of it, and (c) observing whether (Y =1)

or not (Y =0) we flip heads. In this single-unit trial, the difference .80− .50 = .30 would be

the causal total effect of the treatment variable X on the outcome variable Y . Note that

the probabilities .80 and .50 and their difference .30 refer to this single-unit trial, although

these probabilities can only be estimated if we conduct many of these single-unit trials,

that is, if we draw a data sample. However, if these probabilities were known, we could dis-
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Figure 2.1. A simple experiment or quasi-experiment

pense with a sample (including the data that would result from drawing it), and still have a

perfect theory and prediction for the outcome of such a single-unit trial (see Exercise 2-1).

Sampling a unit

The first part of this single-unit trial consists of sampling an observational unit. In the so-

cial sciences, units often are persons, but they might be groups, school classes, schools

and even countries. Usually such units change over time. Therefore, it should be empha-

sized that, in simple experiments and quasi-experiments, we are talking about the units

at the onset of treatment. Later we will see that we have to distinguish between units at

the onset of treatment and units at the time of assessment of the outcome variable, which

might be months or even years later. In a single-unit trial of simple experiments and quasi-

experiments, the units can be represented by the observational-unit variable U , whose

possible values u are the units at the onset of treatment.

Note that the unit at the onset of treatment also comprises his or her experiences a year

and/or the day before treatment, as well as the psycho-bio-social situation in which he or

she is at the onset of treatment. Both, the experiences and the situation, already happen

before the onset of treatment (see Steyer, Mayer, Geiser, & Cole, 2015 for more details).

Therefore, they are attributes of the observational units u. They can be treated in the same

way as other attributes such as sex and educational status. However, if these attributes are

actually assessed and if this assessment is fallible, then we have to distinguish between

these attributes and their fallible assessments (see section 2.2).
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Treatment variable

In an experiment or quasi-experiment, there is always a treatment variable, which we fo-

cus as a cause1 and usually denote it by X . In a true experiment, a unit drawn is assigned

— for example, by the experimenter or by some other person (such as a physician, a psy-

chologist, or a social worker) — to one of the possible treatments. In contrast, in a quasi-

experiment we just observe self-selection to one of the treatment conditions. In the sim-

plest case there are at least two treatment conditions, for example, treatment and control.

These treatment conditions are the possible values of the treatment variable X . For sim-

plicity, we use the values 0,1, . . . , J to represent J +1 treatment conditions. Furthermore,

unless stated otherwise, we presume that treatment assignment and actual exposure to

treatment are equivalent, that is, we assume that there is perfect compliance.

Selection of a unit into one of the treatment conditions x may happen with unknown

probabilities, for example, when there is self-selection or assignment by an unknown

physician. This is often the case in quasi-experiments. However, assignment can also be

done with known probabilities that are equal for different units (such as in the simple

randomized experiment) or with known probabilities that may be unequal for different

units (such as in the conditionally randomized experiment). In this case, these treatment

probabilities may also depend on a covariate Z representing pre-treatment attributes of

the units. As mentioned above, conditional and unconditional randomized assignment,

distinguish the true experiment from the quasi-experiment, in which the assignment prob-

abilities are unknown. (See Remarks 8.30 and 8.31 for more details on randomization and

conditional randomization.)

Potential confounders and covariates

In simple experiments and quasi-experiments, the focus is usually on total treatment ef-

fects on an outcome variable. Hence, if we are interested in the treatment variable as a

cause, then each attribute of the observational units is a potential confounder. Examples

are sex, race, educational status, and socio-economic status. Once the unit is drawn, its sex,

race, educational status, and socio-economic status are fixed. This means that there is no

additional sampling process associated with assessing these potential confounders. This

is also the reason why they do not appear in points (a) to (c) describing the single-unit

trial.

A potential confounder is also called a covariate if it is actually assessed and used to-

gether with X in a conditional expectation or a conditional distribution. Note that a po-

tential confounder can also be unobserved, and in this case we usually do not call it a

covariate.

Because potential confounders represent attributes of the unit at the onset of treatment

they can never be affected by the treatment. However, there can be (stochastic) dependen-

cies between the treatment variable and potential confounders. In the Joe-Ann example

treated in section 1.1, for instance, there is a stochastic dependence of the treatment vari-

able X and the person variable U . Similarly, in the second example presented in section

1.2 there is a stochastic dependence of Z (status) and the treatment variable X .

1 We use the term (putative) cause for a random variable if we consider its causal effect on an outcome variable.

Note that a causal effect can also be 0.
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Multidimensional potential confounders and covariates

Potential confounders – and therefore also covariates – may be uni- or multi-dimensional,

qualitative (such as Z1 :=sex and Z2 := educational status ) or quantitative (such as Z3 :=

height and Z4 :=body mass index) or, if it is a multivariate variable made up of several

uni-dimensional variables, it may consist of qualitative and quantitative potential con-

founders such as Z5 = (Z1, Z4).

Specific potential confounders

Note that the observational-unit variable U and the U -conditional treatment probability

P (X=x |U ) are potential confounders as well. (The values of P (X=x |U ) are the condi-

tional probabilities P (X=x |U=u )), which are attributes of the persons u [see Eq. (1.1)].

Similarly, the Z -conditional treatment probability P (X=x |Z ) is also a potential con-

founder provided that Z is a covariate [see Def. 4.4 (i) and SN-chapters 2 and 10]. Fur-

thermore, the assignment to treatment x with values ‘yes’ and ‘no’ is also a potential con-

founder if assignment to treatment and exposure to treatment (again with values ‘yes’ and

‘no’) are not identical and exposure to treatment is focused as a (putative) cause. This dis-

tinction is useful in experiments with non-compliance (see, e. g., Jo, 2002a, 2002b, 2002c;

Jo et al., 2008).

Unobserved potential confounders

Even if we consider a multivariate potential confounder Z consisting of several univariate

potential confounders, there are always unobserved variables that are prior or simultane-

ous to treatment. Such variables are called unobserved potential confounders. Sometimes

they are also called hidden confounders (cf., e. g., Rosenbaum, 2002a). Of course such an

unobserved potential confounder may bias the conditional expectation values of the out-

come variable just in the same way as an observed covariate. Whether or not the condi-

tional expectation values of the outcome variable in the treatment conditions are unbiased

such that their differences represent causal total effects does not only depend on the rela-

tionship between the observed variables such as X , Y , and the observed (possible multi-

variate) covariate, say Z , but also on the relationship of these variables to the unobserved

potential confounders. In other words, potential confounders exert their maleficent effects

irrespective of whether or not we observe them.

Outcome variable

Of course, the outcome variable Y refers to a time at which the treatment might have had

its impact. Hence, treatment variables are always prior to the outcome variable. In prin-

ciple, we may also observe several outcome variables, for example, in order to study how

the effects of a treatment grow or decline over time or to study treatment effects that are

not confined to a single outcome variable. All random variables mentioned above refer to

a concrete single-unit trial and they have a joint distribution. Each combination of unit,

treatment condition, and score of the outcome variable may be an observed result of such

a single-unit trial. This implies that the variables U , Z , X , and Y , as well as unobserved

potential confounders, say W , have a joint distribution (see, e. g., SN-section 5.3). Once
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we specified the random experiment to be studied, this joint distribution is fixed, even

though it might be known only in parts or even be unknown altogether.

Causal effects and causal dependencies

There is already a plenitude of different kinds of causal effects that can be considered in

the single-unit trial of a simple experiment or quasi-experiment. For simplicity, suppose

the treatment has just two values, say treatment and control. First, there is the causal av-

erage total effect of treatment (compared to control) on the outcome variable Y . Second,

there are the causal conditional total treatment effects on Y , where we may condition on

any function of the observational-unit variable U . If, for example, Z := sex with values m

for male and f for female, then we may consider the causal (Z =m)-conditional total treat-

ment effect on Y , that is, the causal average total treatment effect for males, and the causal

(Z = f )-conditional total treatment effect on Y , that is, the causal average total treatment

effect for females. Similarly, if Z := socio-economical status, we may consider the causal

conditional total treatment effects on Y for each status group, etc. Third, although diffi-

cult and often impossible to estimate, we may also consider the causal individual total

effect of treatment compared to control on Y .

By definition, within a simple experiment and quasi-experiment we cannot consider

any direct treatment effects with respect to a one or more specified intermediate vari-

ables, that is, the effects of the treatment on the outcome variable that are not transmitted

through specified intermediate variables. However, the causal total treatment effects dis-

cussed above are, of course, transmitted through intermediate variables, irrespective of

whether or not we observe (or are aware of) these intermediate variables.

2.2 Experiments With Fallible Covariates

Another class of random experiments are single-unit trials of experiments and quasi-

experiments in which we assess a fallible covariate. In this case, the fallible covariate does

not represent a (deterministic) attribute of the observational units. The single-unit trial of

such an experiment of quasi-experiment consists of:

(a) sampling an observational unit u (e. g., a person) from a set of units,

(b) assessing the values z1, . . . , zk of the covariates (pre-treatment variables) Z1, . . . , Zk ,

k ≥ 1.

(c) assigning the unit or observing its assignment to one of several experimental con-

ditions (represented by the value x of the treatment variable X ),

(d) recording the value y of the outcome variable Y .

The crucial distinction between a simple (quasi-) experiment and a (quasi-) experiment

with fallible covariates is that there is variability of at least one of the covariates given the

observational unit u (see Fig. 2.2). In this case, we may distinguish between the latent

covariate, say ξ, representing the attribute to be assessed and its fallible measures, some

manifest variables that can actually be observed. (For a theory of latent variables see Steyer

et al., 2015). Also note that sometimes it is crucial to adjust the effect of X on Y by condi-

tioning on the latent variable ξ in order to fully adjust for the bias of the prima-facie effect



2.2 Experiments With Fallible Covariates 33

u1

z1

control

y1

y2

...

treatment

y1

y2

...

z2

control

y1

y2

...

treatment

y1

y2

...

...

u2

z1

control

y1

y2

...

treatment

y1

y2

...

z2

control

y1

y2

...

treatment

y1

y2

...

...

..

.

Figure 2.2. Experiment or quasi-experiment with a fallible covariate

of X on Y . In these cases, only adjusting for the manifest variables that measure the latent

covariate ξ does not completely remove bias (see, e. g., ?, ? RST).

Furthermore, this distinction also implies that the unit whose attributes are measured

at the time when the potential confounder is assessed is not identical any more with the

unit at the onset of treatment (see section 2.1). The covariate might be assessed some

months before the treatment is given — enough time and plenty of possibilities for the unit

to change in various ways, for example, due to maturation, learning, critical life events, and

other experiences that are not fixed yet at the time of assessing the covariate. As a conse-

quence, a variable, say W , representing such intermediate events or experiences may also

affect the outcome variable Y and the treatment variable. Hence, such intermediate vari-

ables are also potential confounders. This is one of the reasons why we need to define

causal effects in a more general way than in the Neyman-Rubin tradition (see chs. 4 and

5).
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Note that assessing a fallible covariate does not only change the interpretation of the

observational-unit variable U (now its values are the units of the time of assessment of the

manifest covariates), but it also changes the random experiment, and with it, the empiri-

cal phenomenon we are considering. Assessing a fallible covariate often involves that the

sampled person fills in a questionnaire or takes a test. Assessing, prior to treatment, a fal-

lible covariate such as a test of an ability, an attitude, or a personality trait, may change the

observational units and their attributes, as well as the effects of the treatment on a spec-

ified outcome variable, which usually is related to such pre-treatment variables. This has

already been discussed by Campbell and Stanley (1963), who also recommended designs

for studying how pre-treatment assessment modifies the effects of the treatment variable

on the outcome variable.

Potential confounders and covariates

Which are the potential confounders of the treatment variable X in such a single-unit trial?

First of all, it is each attribute of the units at the time of the assessment of the observed

covariates. This does not only include variables such as sex, race, and educational status,

but also a latent covariate, say ξ, (which might be multi-dimensional). Furthermore, aside

from the manifest covariates, each variable W representing an intermediate event or ex-

perience of the unit (occurring in between the assessment of the observed covariates and

the onset of the treatment), as well as any attribute of the unit at the onset of treatment is

a potential confounder as well, irrespective of whether or not these potential confounders

are observed.

RST drin lassen nur wenn spaeter Beispiele kommen

Note that a latent covariate ξmay be considered a cause of its fallible measures Z1 , . . . , Zk

but also of the outcome variable Y . This is not in conflict with the theory that the treatment

variable X is a cause of Y as well. In this kind of single-unit trial, we have several causes and

several outcome variables, and a cause itself can be considered as an outcome variable. For

example, it would be possible to consider the treatment variable X to be causally depen-

dent on the manifest or latent covariates. In other words, we may also raise the question if

the treatment probabilities P (X=1 |Z1, . . . , Zk ) or P (X=1 |ξ) describe causal dependencies.

This makes clear that the terms potential confounder and ‘covariate’ can only be defined

with respect to a focused cause.

RST Ende

2.3 Two-Factorial Experiments

As a third class of random experiments we consider two-factorial experiments. The single-

unit trial of such a two-factorial experiment or quasi-experiment consists of:

(a) sampling an observational unit u (e. g., a person) from a set of units,

(b) assigning the unit or observing its assignment to one of several experimental con-

ditions that are defined by the pair (x, z) of levels of two treatment variables X and

Z , respectively.

(c) recording the value y of the outcome variable Y .
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Sampling a unit

Because we presume that no fallible potential confounders such as ‘severity of symptoms’,

‘motivation for treatment’, etc. are assessed before treatment, sampling an observational

unit means that we are sampling a unit at the onset of treatment.

Treatment variables

As a simple example, let us consider an experiment in which we study the effects — in-

cluding the joint effects — of two treatment factors, say individual therapy represented by

X (with values ‘yes’ and ‘no’) and group therapy represented by Z (with values ‘yes’ and

‘no’).

In such a two-factorial experiment, we may consider group therapy as a covariate and

individual therapy to be the cause in order to ask for the conditional and average total

effects of individual therapy given group therapy. In contrast, we may also consider indi-

vidual therapy to be a covariate and group therapy to be the focused treatment variable.

Finally, we may also consider the two-dimensional variable (X , Z ) as the cause. Which

option is chosen depends on the causal effects we are interested in (see below).

Outcome variable

Again, the outcome variable Y refers to a time at which the treatment might have exerted

the effect to be estimated. Hence, both treatment variables are prior to the outcome vari-

able considered. And again, we may also observe several outcome variables, for example,

in order to study how effects of a treatment grow or decline over time or to study effects

that are not confined to a single outcome variable.

Causal effects

There are several causal effects we might look at. If X and Z have only two values, then we

may be interested in the following effects on the outcome variable Y :

(a1) the conditional total effect of ‘individual therapy’ as compared to ‘no individual ther-

apy’ given that the unit treated also receives ‘group therapy’,

(b1) the corresponding conditional total effect given that the unit does not receive ‘group

therapy’, and

(c1) the average of these conditional total effects of ‘individual therapy’ as compared to

‘no individual therapy’, averaging over the two values of Z .

Vice versa, we might also be interested in the following effects on the outcome variable Y :

(a2) the conditional total effect of ‘group therapy’ as compared to ‘no group therapy’

given that the unit treated also receives ‘individual therapy’,

(b2) the corresponding conditional total effect given that the unit does not receive ‘indi-

vidual therapy’, and

(c2) the average of these conditional total effects of ‘group therapy’ as compared to ‘no

group therapy’, averaging over the two values of X .

Furthermore, there are other causal effects on Y we might study, namely
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(a3) the total effect of receiving ‘individual therapy’ and ‘group therapy’ as compared to

receiving none of the two treatments.

(b3) the total effect of receiving ‘individual therapy’ and ‘no group therapy’ as compared

to receiving ‘group therapy’ and ‘no individual therapy’.

All these effects may answer meaningful causal questions. In fact there are even more

causal effects than those listed above. For example, we could compare each of the four

combinations of the two treatments to an average of the other treatments. Furthermore,

many additional causal effects can be considered if we condition on other covariates such

as sex or educational status.

Potential confounders and covariates

If we focus on the effect of X (individual therapy), then we consider Z (group therapy)

as a covariate of X . In contrast, we treat X as a covariate of Z if we study the effects of

Z (group therapy). Furthermore, in both cases, each attribute of the unit at the onset of

treatment (such as sex or educational status) could be considered as covariates as well.

Assessing these covariates does not appear in points (a) to (c) of the random experiment,

because these covariates are (deterministic) functions of the observational-unit variable.

Therefore, there is no additional sampling process associated with their assessment.

This is also true for other potential confounders, for example, variables characterizing

the situation in which the unit is at the onset of treatment, the number of hours slept last

night, or day time at which the unit receives its treatment. Even variables that characterize

early experiences in the childhood of the unit such as a broken home or mother’s child care

behavior are potential confounders in this single-unit trial. They are there and exert their

effects even if they are not assessed.

Note again that assessment of these potential confounders in a questionnaire filled in

by the person constitutes a new random experiment that may differ in important ways

from a random experiment in which the unit has no such task (see section 2.2). In psy-

chology, an assessment often is a treatment of its own.

2.4 Multilevel Experiments

In multilevel experiments and quasi-experiments we also study the effect of a treatment

on an outcome variable. However, in such a design the observational units are nested

within higher hierarchical units referred to as clusters. Examples include experiments, in

which students are nested within classrooms, patients are nested within clinics, and in-

habitants are nested in cities and neighborhoods. Multilevel designs can be classified as

designs with treatment assignment at the unit-level or at the cluster-level. Furthermore,

multilevel designs differ with respect to the assignment of units to clusters. There are de-

signs with pre-existing clusters and there are designs with assignment of units to clusters.

All these designs involve different single-unit trials.

A single-unit trial with pre-existing clusters consists of:

(a) sampling a cluster c (e. g., a school class, a neighborhood, or a hospital) from a set

of clusters,
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(b) sampling an observational unit u (e. g., a person) from a set of units within the clus-

ter,

(c) assigning the unit or the cluster (depending on the design) or observing their as-

signment to one of several experimental conditions (represented by the value x of

the treatment variable X ),

(d) recording the value y of the outcome variable Y .

In contrast, a single-unit trial with assignment of units to clusters consists of:

(a) sampling an observational unit u (e. g., a person) from a set of units,

(b) assigning the unit or observing its assignment to one of several clusters (repre-

sented by the value c of the cluster variable C ),

(c) assigning the unit or the cluster (depending on the design) or observing their as-

signment to one of several experimental conditions (represented by the value x of

the treatment variable X ),

(d) recording the value y of the outcome variable Y .

In the experiment with pre-existing clusters, each unit can only appear in one cluster,

whereas in the experiment with assignment of units to a cluster, each unit can appear in

more than one cluster. Note again, that we are considering single-units trials from the pre-

factual perspective, not from the post-factual or ‘counter-factual’ perspective (see the re-

marks following the description of the random experiment presented in Table 1.1). Hence,

in experiments with assignment of units to a cluster, the cluster variable can bias the de-

pendency of the outcome variable on the treatment variable on the level of the observa-

tional unit. In this aspect this design resembles the multifactorial design described in sec-

tion 2.3.

Potential confounders and covariates

Which are the potential confounders in multilevel designs if the treatment variable X is

considered as the cause? The answer depends on the type of design considered: In designs

with treatment assignment of units to clusters, attributes of the observational unit such

as sex, race, or educational status, are potential confounders of X . Other potential con-

founders are attributes of the cluster such as school type, hospital ownership, or school-

level socio-economic status or school-level intelligence. The last two kinds of potential con-

founders would be defined as conditional expectations of the corresponding potential

confounders at the unit-level given the cluster variable.

In these designs, clusters may not only be considered as potential confounders, but also

as treatments, because some of the effects observed later on may depend on the compo-

sition of the group to which a particular unit, say Joe, is assigned. Receiving group therapy

together with beautiful Ann in the same group might make a great difference as compared

to getting it together with awful Joe. In designs in which clusters as a whole are assigned to

treatment conditions, only attributes of the cluster can influence the assignment. Hence,

in data analysis we would focus on controlling for the potential confounders on the cluster

level (see, e. g., Nagengast, 2009, for more details).
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2.5 Experiments With Latent Outcome Variables

We may also consider single-unit trials of experiments with a latent outcome variable. The

basic goal of such experiments is to investigate the effect of the treatment variable X on a

latent outcome variable, say η. This is of interest, for example, where a quantitative out-

come variable can only be measured by qualitative observations such as solving or not

solving certain items indicating the (latent) ability. However, it can also be of interest if the

manifest measures are linearly related to the latent variable such as in models of classical

test theory (see, e. g., Steyer, 2001) or in models of latent state-trait theory (see, e. g., Steyer

et al., 2015). If, for example, there are three manifest variables Y1, Y2, and Y3 measuring

a single latent variable η, we may ask if there is just one single effect of the treatment on

the latent outcome variable η – which transmits these effects to the manifest variables Y1,

Y2, and Y3 – instead of three separate effects of X on each variable Yi . Hence, the latent

variable may also be considered to be a mediator variable. Showing that all effects of X on

the variables Yi are indirect, that is, mediated by η is one of the research efforts that aims

at establishing construct validity of the latent variable η.

In the simplest case with a single latent variable, we consider the following single-unit

trial:

(a) Sampling a person u out of a set of persons,

(b) assigning the unit or observing its assignment to one of several experimental condi-

tions (represented by the value x of the treatment variable X ),

(c) recording the values y1, . . . , ym of the manifest outcome variables Y1, . . . ,Ym .

In this single-unit trial, the values u of the observational-unit variable U again repre-

sent the observational unit at the onset of treatment, while the latent outcome variable η

represents some attribute of the unit at the time point at which the outcome of the treat-

ment is assessed. Clearly, this time point is after treatment and prior to the observation

of the manifest outcome variables Yi , at least as long as we preclude change in the latent

variable during the process of assessing the manifest outcome variables. If this cannot be

precluded, we would have to consider the time sequence in assessing the manifest out-

come variables (e. g., of the items to be solved or answered) as well.

Potential confounderes and covariates

Which are the potential confounders in such a single-unit trial? Again, the answer depends

on the cause considered. If it is the treatment variable X , then each attribute of the unit at

the onset of treatment is a potential confounder (with respect to X ). Obviously, this again

includes variables such as sex, race, and educational status. Note that in this kind of exper-

iments, the set of potential confounders of X is the same irrespective of the choice of the

outcome variable. Remember, we may not only consider the latent outcome variable η but

also the manifest outcome variables Yi , for example, in order to study whether or not the

effects of X on these manifest outcome variables are perfectly transmitted (or mediated)

through the latent variable η.

Choosing the latent outcome variable η as a cause of the manifest outcomes variables

Yi brings additional potential confounders into play, for instance, all those variables that

are in between treatment and the assessment of η. If, for example, we consider an exper-

iment studying the effects of different teaching methods, these additional potential con-
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Box 2.1 Glossary of new concepts

Random experiment The kind of empirical phenomenon to which events, random

variables, and their dependencies refer.

Single-unit trial A particular kind of random experiment that consists of sampling

a single unit from a set of observational units and observing the

values of one or more random variables related to this unit.

Cause A random variable. Its effect on an outcome variable is consid-

ered.

Outcome variable A random variable. Its dependency on a cause is considered.

Potential confounder If we confine the discussion to total causal effects, then it is a ran-

dom variable that is prior or simultaneous to the cause consid-

ered. It might be correlated with the cause and the outcome vari-

able.

Covariate A potential confounder that is considered together with X in a

conditional expectation or a conditional distribution.

Fallible covariate A covariate that is assessed with measurement error.

Latent covariate A covariate that is not directly observed. Instead it is defined us-

ing some parameters of the joint distribution of a set of manifest

random variables.

Intermediate variable A variable that might mediate (transmit) the effect of the cause

on the outcome variable. The cause is always prior to an inter-

mediate variable and an intermediate variable is always prior to

the outcome variable. An intermediate variable is not necessarily

affected by the cause and it does not necessarily have an effect on

the outcome variable.

Mediator An intermediate variable on which X has a causal effect and

which itself has a causal effect on the outcome variable Y .

Note that all these terms are still of an informal nature. Their mathematical treatment starts in

chapter 4.

founders are critical life events (such as father or mother leaving the family), or additional

lessons taken after treatment and before outcome assessment, for instance.

2.6 Summary and Conclusion

In this chapter we described a number of random experiments in informal terms. The

purpose was to get a first idea which kind of empirical phenomena causal theories and

hypotheses refer to. We focused on single-unit trials, which are the kinds of empirical phe-

nomena we are interested in, both in theory and practice. We emphasized that a single-

unit trial is a random experiment and discussed several kinds of random variables playing
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a crucial role in the theory of causal effects. We also mentioned that there is a certain time

order among these random variables, for example, saying that the potential confounders

are ‘prior’ or ‘simultaneous’ to the treatment variable, which itself is ‘prior’ to the outcome

variable. Furthermore, for each single-unit trial and each cause in such a single-unit trial,

we discussed the potential confounders involved. We emphasized that each cause consid-

ered in such a single-unit trial has its own set of potential confounders.

Other single-unit trials

The single-unit trials discussed in this chapter are just a small selection of single-unit tri-

als in which causal effects and causality of stochastic dependencies are of interest. We

might also consider single-unit trials with latent covariates and latent outcome variables

and manifest and/or latent intermediate variables, but also single-unit trials with multiple

mediation. Furthermore, we could also consider single-unit trials of growth curve models

(see, e. g., Biesanz, Deeb-Sossa, Aubrecht, Bollen, & Curran, 2004; Bollen & Curran, 2006;

Meredith & Tisak, 1990; Singer & Willett, 2003; Tisak & Tisak, 2000), latent change mod-

els (see, e. g., McArdle, 2001; Steyer, Eid, & Schwenkmezger, 1997; Steyer, 2005), or cross-

lagged panel models (see, e. g., Kenny, 1975; Rogosa, 1980b; Watkins, Lei, & Canivez, 2007;

Wolf, Chandler, & Spies, 1981). Causality is also an issue in uni- and multivariate time-

series analysis as well as in stochastic processes with continuous time. However, in this

book our examples will usually deal with experiments and quasi-experiments, including

latent covariates and outcome variables.

Outlook

Steyer and Nagel (2017) treat the fundamental concepts related to probability, conditional

expectations, conditional independence, and conditional distributions. In chapter 4 we

introduce additional mathematic concepts that allow us to meaningfully talk about time

order between events and random variables. There, we also define concepts such as po-

tential confounders. This will provide the mathematical framework and the language in

which causal effects can meaningfully be discussed.

2.7 Exercises

⊲ Exercise 2-1 Imagine that the probabilities of a crash for a flight with Airline A is ten times smaller

than with Airline B. Which airline would you choose?

⊲ Exercise 2-2 Why does the theory of causal effects refer to single-unit trials?

⊲ Exercise 2-3 Why is it important to know which random experiment we are talking about?

⊲ Exercise 2-4 Which type of random experiment did we refer to in the two examples described in

chapter 1?

⊲ Exercise 2-5 Why is it important to emphasize that, in simple experiments and quasi-experiments

(see section 2.1), the observational-unit variable U represents the observational units at the onset of

treatment ?

⊲ Exercise 2-6 What is the basic idea of a potential confounder of a cause?
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⊲ Exercise 2-7 Which kinds of causal effects can be considered in the simple experiment or quasi-

experiment in which no fallible potential confounder and no intermediate variable is assessed?

Solutions

⊲ Solution 2-1 If your answer is A, then you implicitly apply these probabilities to the random ex-

periment of flying once with A or B, even if these probabilities have been estimated in a sample. This

example serves to emphasize that, not only in theory but also in practice, we are mainly interested

in a single-unit trial, not in a sample consisting of many such single-unit trials, and in particular not

in what applies to sample size going to infinity. (This is how many applied statisticians try to specify

the term ‘population’.)

⊲ Solution 2-2 Within such a single-unit trial, the various concepts of causal effects can be defined

and we can study how to identify these causal effects from the parameters describing the joint dis-

tribution of the random variables considered. In such a single-unit trial, there usually is a clear time

order which helps (but is not sufficient) to disentangle the possible causal relationships between the

random variables considered.

⊲ Solution 2-3 Different random experiments are different empirical phenomena. Although the

names of the variables in different random experiments might be the same, the variables themselves

are different entities, implying that the dependencies and effects between these variables might be

different in different random experiments.

⊲ Solution 2-4 The type of random experiment we refer to in these examples is the single-unit trial

of simple experiments and quasi-experiments described in section 2.1.

⊲ Solution 2-5 In the social sciences, units are often persons, and persons can change over time.

If, in a simple experiment or quasi-experiment, a value u of U represents the observational unit

sampled at the onset of treatment, each potential confounder is a function of U . If, in contrast, U

represents the observational unit at the assessment of a fallible covariate (see section 2.2), which is

some time prior to the onset of treatment, then there can be other potential confounders in between

assessment of the fallible potential confounder and the onset of treatment. We have to consider

these additional potential confounders both in the definition of causal effects and in data analysis.

⊲ Solution 2-6 A potential confounder of a cause is a random variable that is prior or simultaneous

to the cause, at least as long as we only consider total effects. (If we also consider direct effects, then

a potential confounder can also be posterior to a cause.)

⊲ Solution 2-7 If the treatment has just two values, say treatment and control, there are different

kinds of causal effects of the treatment variable on the outcome variable Y , such as the average

total treatment effect, the conditional total treatment effects given a value of a covariate Z , and the

individual total effect of X on Y given an observational unit u. Aside from these treatment effects,

we may also consider the causal effects of a potential confounder Z on the treatment variable X , but

also on the outcome variable Y .





Chapter 3

Probability and Conditional Expectation

In chapter 1 it has been shown that the conditional expectation values E (Y |X=x) of an

outcome variable Y and their differences E (Y |X=x) − E (Y |X=x ′), the prima facie effects,

can be misleading in evaluating the causal total effect of a (treatment) variable X on an

(outcome) variable Y. There we treated a number of other effects that might be useful

for the evaluation of a treatment (see Box 1.1). In chapter 2, we described random ex-

periments of various research designs in which a causal total effect is of interest. These

chapters hopefully motivated the reader to make himself familiar with the most important

concepts of probability theory. Aside from the fundamental concepts such as σ-algebra ,

probability measure, probability space, random variable, expectation, variance, covari-

ance, etc., Steyer and Nagel (2017) extensively treat the concepts that can be used to de-

scribe stochastic dependencies, including conditional expectation values, conditional ex-

pectations, and conditional distributions. This book includes many theorems as well as

other propositions and their proofs. It will often be used and referred to by SN followed by

Definition, Equation, Theorem, Remark, etc.

In this chapter we review the most important of these concepts of probability theory,

for two purposes. The first is to refresh them so that the reader has them at hand when

they are used in this book. The second purpose is to sensitize the reader to the fact that

the traditional probabilistic concepts alone cannot be used offhandedly for describing the

causal effects in which we are interested when we evaluate a treatment, an intervention,

or an exposition. We start with the components of a probability space that can be used

for a mathematical representation of a concrete random experiment. Then we define the

concepts of a random variable and its distribution. Finally, we turn to concepts that can be

used to describe stochastic dependencies among random variables, including conditional

expectation values and conditional expectations. Hence, now, among others, we belatedly

introduce the concepts already used in chapter 1. All concepts presented in this chapter

are treated in more detail in Steyer and Nagel (2017). They are just selected for the purpose

of this book and illustrated by some new examples.

3.1 Probability Space

In this section we introduce the three components of a probability space, a set of possible

outcomes (of the random experiment considered), a set of possible events to be considered,

and a probability measure that assigns a probability to each of these possible events. All

three components have a certain mathematical structure.
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Table 3.1. Joe and Ann with randomized assignment

Outcomes ωi Observables Conditional expectations
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ω1 = (Joe, no, −) .09 .15 0 Joe 0 0 .7 .45 .4 .7 .8

ω2 = (Joe, no, +) .21 .35 0 Joe 0 1 .7 .45 .4 .7 .8

ω3 = (Joe, yes, −) .04 0 .1 Joe 1 0 .8 .6 .4 .7 .8

ω4 = (Joe, yes, +) .16 0 .4 Joe 1 1 .8 .6 .4 .7 .8

ω5 = (Ann, no, −) .24 .4 0 Ann 0 0 .2 .45 .4 .2 .4

ω6 = (Ann, no, +) .06 .1 0 Ann 0 1 .2 .45 .4 .2 .4

ω7 = (Ann, yes, −) .12 0 .3 Ann 1 0 .4 .6 .4 .2 .4

ω8 = (Ann, yes, +) .08 0 .2 Ann 1 1 .4 .6 .4 .2 .4

Note . The probabilities of the elementary events are fictive. The terms illustrated in this table

are introduced in the course of this chapter. The event B occurring in the third column denotes

the event that the drawn person is treated (see Example 3.18).

3.1.1 Set of Possible Outcomes

The set of possible outcomes (of a random experiment), also called sample space, is the first

component of a probability space. If we think about a specific random experiment, then

we should at least know its set of possible outcomes. The mathematical structure of this

component is simply the structure of a set. This means that we have to know its elements,

the possible outcomes. We use the term possible outcomes in order to communicate and

keep in mind that we are always talking about a random experiment from the pre-factual

perspective, that is, from the perspective before it is actually conducted. Even if a random

experiment is already executed, then, talking about the probabilities of certain events, we

do as if it has not yet been conducted. Only in this way does it make sense to talk about

the probability of an event.

Example 3.1 (Joe and Ann With Randomized Assignment) A first example is presented

in Table 3.1. The first column in this table contains the eight elements of the set Ω of pos-

sible outcomes of the random experiment considered. Hence, in this example,

Ω = {ω1, . . . ,ω8} =
{

(Joe,no,−), (Joe,no,+) , . . . , (Ann,yes,+)
}

, (3.1)

that is, Ω consists of the eight triples (Joe,no,−), (Joe,no,+) , . . . , (Ann,yes,+). If we define

ΩU = { Joe , Ann }, ΩX = {no,yes }, and ΩY = {−,+}, then Ω can also be written as the Carte-

sian product

Ω = ΩU ×ΩX ×ΩY. (3.2)
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In this example, the set Ω of possible outcomes has eight elements. ⊳

Example 3.2 (Nonorthogonal Two-Factorial Experiment) Another example has already

been presented in Table 1.5. If we define the sets

ΩU = {Tom ,Tim , Joe , Jim , Ann , Eva ,Sue ,Mia },

ΩX = {control,treatment 1,treatment 2},

and

ΩY = R,

then Ω is the Cartesian product of these three sets, that is,

Ω = ΩU ×ΩX ×ΩY.

In contrast to Example 3.1, now the set Ω has an uncountable number of elements, which

would be necessary if we want to consider a response variable Y that can take on as a value

any real number, representing, for example, the degree of success. This is also the reason

why we choose the compressed form in Table 1.5, which does not show the possible values

of Y but only its (X=x,U=u)-conditional expectation values [see Eq. (3.27) and Def. 3.66].

Note that in many empirical applications in psychology or the social sciences, ΩY may just

be a subset of R. ⊳

3.1.2 Set of Possible Events

The second component of a probability space is a set of possible events. It is a set of subsets

of the setΩ of possible outcomes. This set of subsets ofΩ has the properties of a σ-algebra .

An element of a σ-algebra is called a measurable set, or an event, if there is a probability

measure on this σ-algebra. We use Ac to denote the complement of A, that is, Ac :=Ω \ A,

where Ω \ A consists of all elements of Ω that are not elements of A.

Definition 3.3 (σ-Algebra and Measurable Space)

A set A of subsets of a nonempty set Ω is called a σ-algebra (or σ-field) on Ω, if the

following three conditions hold:

(a) Ω ∈A.

(b) If A ∈A, then Ac ∈A.

(c) If A1, A2, . . . ∈A, then
⋃∞

i=1
Ai ∈A.

An element A of a σ-algebra A is called a measurable set. The pair (Ω,A ) is called a

measurable space.

Remark 3.4 ( Closure With Respect to Set Operations ) Condition (c) means that a σ-al-

gebra is closed with respect to countable unions of sets A1, A2, . . . ∈ A. However, in con-

junction with (a) and (b) this implies that a σ-algebra is also closed with respect to finite

unions of sets A1, . . . , An ∈A. That is, if A1, . . . , An ∈A, then A1 ∪ . . .∪ An ∈A . Furthermore,

although condition (c) explicitly requires only that σ-algebras are closed with respect to

countable unions, Definition 3.3 implies that a σ-algebra is closed also with respect to in-

tersections such as A1 ∩ A2 and set differences A1 \ A2. In other words, if A1 and A2 are
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elements of A, then A1 ∪ A2, A1 ∩ A2, and A1 \ A2 are elements of A as well, provided that

A is a σ-algebra. The same is true for countable intersections A1 ∩ A2 ∩ . . . of elements of

A. (For more details see SN-section 1.2.) ⊳

Example 3.5 (Joe and Ann With Randomized Assignment) We may define A := P (Ω) to

be the power set, that is, the set of all subsets of the set Ω that has been specified in Equa-

tion (3.1). The power set of the set Ω is always a σ-algebra on Ω. In this example, the power

set contains 28 = 256 elements. Other σ-algebras on Ω are the trivial σ-algebra {Ω,Ø} and

{A, Ac,Ω,Ø}, provided that A ⊂Ω (see Exercises 3-1 and 3-2). ⊳

Example 3.6 (Nonorthogonal Two-Factorial Experiment) In this example we cannot use

the power set of Ω as a σ-algebra, because this would lead to contradictions (see SN-

Rem. 1.8). Instead we use the product of the σ-algebras AU = P (ΩU), AX = P (ΩX), and

the Borel σ-algebra B on R, which contains as elements all singletons {α}, α ∈ R, as well

as all (open, half open, and closed) intervals, their countable unions and intersections (for

the definition of these concepts and more details see SN-section 1.2.2 and SN-Def. 1.31).

⊳

3.1.3 Probability Measure

The last component of a probability space is a probability measure, which assigns a prob-

ability to each element of a σ-algebra. This concept has beed introduced by Kolmogorov

(1933/1977) (for the English version of this book see Kolmogorov, 1956). In the following

definition we use [0,1] to denote the closed interval of the real numbers between 0 and 1,

inclusively.

Definition 3.7 (Probability Measure)

Let (Ω,A ) be a measurable space. Then the function P : A → [0,1] is called a probabi-

lity measure on (Ω,A ), if the following conditions hold:

(a) P (Ω) = 1 ( standardization ).

(b) P (A) ≥ 0, ∀A ∈A ( nonnegativity ).

(c) A1, A2, . . . ∈A are pairwise disjoint ⇒ P
( ∞

⋃

i=1

Ai

)

=

∞
∑

i=1

P (Ai ) (σ-additivity).

Remark 3.8 (Probability of an Event and Probability Space) Let P be a probability mea-

sure on (Ω,A ). Then the triple (Ω,A,P ) is called a probability space and a value P (A) of

P is called the probability of (the event) A. If a probability space is used to represent a

random experiment, then it contains all information about this random experiment, that

is, everything we can ever learn about this random experiment can be computed from

the probabilities P (A), A ∈A. The most important properties of a probability measure are

gathered in SN-Box 4.1. (For the general concept of a measure and its properties as well as

for other measures than probability measures see SN-chapter 1.) ⊳

Remark 3.9 (Elementary Event and Event) Let (Ω,A,P ) be a probability space. Then A is

called a (possible) event, if A ∈A and a set {ω} is called a (possible) elementary event if ω ∈

Ω and {ω} ∈ A. Note the distinction between an outcome ω ∈ Ω and an elementary event
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{ω} ∈ A . Also note that the term event is only used in the context of a probability space

(Ω,A,P ). Otherwise A ∈A is called a measurable set. For simplicity we often drop the long-

winded term ‘possible’ if we talk about outcomes and events. Nevertheless, in applications

we continue considering a random experiment from the pre-factual perspective. ⊳

Remark 3.10 (Probability Space and Random Experiment) Note the disctinction between

a probability space and a random experiment. The term probability space is a mathemati-

cal concept. It does not have any empirical meaning unless we interpret Ω by saying that

it represents the set of possible outcomes of a concrete random experiment. In contrast,

‘random experiment’ is a term of our colloquial language referring to an empirical phe-

nomenom that we might be interested in. Giving Ω a concrete empirical meaning, the

σ-algebra A also obtains a concrete empirical meaning: the set of possible events A to

be considered in this concrete random experiment. Correspondingly, the probability mea-

sure P assigns to each of these possible events A their probabilities P (A) that refer to this

specific random experiment. Hence, propositions about probabilities refer to a concrete

random experiment and cannot readily be generalized to other random experiments. ⊳

Example 3.11 (Joe and Ann With Randomized Assignment) The second column of Table

3.1 displays the assignment of the probabilities to all eight elementary events. In this ex-

ample, each nonempty element A ∈ A is a union of the elementary events {ωi }, ωi ∈ Ω,

and because a measure is additive, the probability measure P : A → [0,1] is uniquely de-

fined by the second column of Table 3.1 [see SN-Box 4.1 (x)]. The probabilities of all other

events that can be considered in this random experiment can be computed from the prob-

abilities of the eight elementary events. Hence, because Ω has been fixed in Example 3.1

and A in Example 3.5, now the probability space (Ω,A,P ) is completely specified. Note

that the probabilities of the elementary events differ from the example presented in Table

1.2. Now the probabilities may be interpreted to describe an experiment with randomized

assignment of persons to treatment conditions. ⊳

Example 3.12 (Nonorthogonal Two-Factorial Experiment) In this example, specifying the

probability measure is more difficult than in Example 3.11. What has been fixed in the third

column of Table 1.5 are the probabilities of the events {U=u } := {ω ∈Ω: U (ω)= u }. In the

fourth column of that table we also specified the conditional probabilities P (X =1 |U=u)

of the event {X =1} := {ω ∈Ω: X (ω) = 1} given the event {U=u }. Furthermore, we also fixed

the conditional expectation values E (Y | X=x,U=u) for all pairs (x,u) of values X and U .

What has not been specified in that table are the (X=x,U=u)-conditional distributions of

Y . If we assume that Y is continuous and has a normal distribution with identical con-

ditional variances Var (Y |X=x ,U=u) = σ
2 given each pair (x,u) of values X and U , then

the probability measure P on (Ω,A ) is completely specified. (The crucial arguments are

SN-Theorem 17.37 and the fact that the normal distribution is completely determined by

the expectation and the variance of the random variable considered.) Instead of assuming

identical conditional variances, we may also specify different conditional variances and, in

principle, also different (non-normal) conditional distributions of Y given each pair (x,u)

of values X and U . ⊳
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3.1.4 Conditional Probability

The conditional probability of an event A given an event B can be used to describe the

dependency of A on B with respect to a probability measure P on A. We will also use this

concept in order to introduce the concept of a conditional probability measure.

Definition 3.13 (Conditional Probability)

Let (Ω,A,P ) be a probability space, A,B ∈A, and P (B) > 0. Then

P (A |B) :=
P (A∩B )

P (B)
(3.3)

is called the conditional probability of A given B (with respect to P).

Example 3.14 (Joe and Ann With Randomized Assignment) Consider again Table 3.1, de-

fine ΩU = {Joe,Ann } and ΩX = {yes,no }, and let

C = ΩU ×ΩX × {+} =
{

(Joe,no,+), (Joe,yes,+) , (Ann,no,+), (Ann,yes,+)
}

be the event that the drawn person is successful (no matter who is drawn and whether or

not he or she is treated). Furthermore, let

B = ΩU × {yes }×ΩY =
{

(Joe,yes,−), (Joe,yes,+) , (Ann,yes,−), (Ann,yes,+)
}

denote the event that the drawn person is treated. Then Equation (3.3) yields:

P (C |B) =
P (C ∩B)

P (B)
=

P (ΩU × {yes}× {+})

P (ΩU × {yes}×ΩY)
=

.16+ .08

.04+ .16+ .12+ .08
= .6.

Conditioning on the event B c that the drawn person is not treated yields

P (C |B c ) =
P (C ∩B c )

P (B c )
=

P (ΩU × {no }× {+})

P (ΩU × {no }×ΩY)
=

.21+ .06

.09+ .21+ .24+ .06
= .45.

In this example, the difference P (C |B)−P (C |B c ) = .6− .45 = .15 can be used to evaluate

the average effect of the treatment. In fact, if we additionally take into account the event

A = { Joe }×ΩX ×ΩY =
{

(Joe,no,−), (Joe,no,+) , (Joe,yes,−), (Joe,yes,+)
}

,

then it is easy to see that .15 is the average of the two individual treatment effects

P (C |B ∩ A)−P (C |B c
∩ A) = .8− .7 = .1

and

P (C |B ∩ Ac )−P (C |B c
∩ Ac ) = .4− .2 = .2

of Joe and Ann, respectively. In contrast, if we compute the corresponding conditional

probabilities for the random experiment presented in Table 1.2, then we receive P (C |B)−

P (C |B c ) = .42− .6 = −.18, while the two individual treatment effects remain unchanged.

Hence, in the example of Table 1.2, the difference P (C |B)−P (C |B c ) =−.18 is completely

misleading if interpreted as the average effect of the treatment. ⊳
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Example 3.15 (Nonorthogonal Two-Factorial Experiment) In the fourth column of Ta-

ble 1.5 we displayed the conditional treatment probabilities P (X =1 |U=u). These con-

ditional probabilities are the conditional probabilities of an event A given an event B as

introduced in Definition 3.13. Consider the event

A = ΩU × {treatment 1}×ΩY

and the event

B = {Tom }×ΩX ×ΩY

(see Example 1.5 for the definition of the sets ΩU, ΩX, and ΩY). Then

P (A |B) = P (X =1 |U=Tom ) = 10/60

(see the first row in the fourth column of Table 1.5). The notation P (X =1 |U=u) will be

introduced in Example 3.43. ⊳

3.1.5 Conditional Probability Measure

Just like (unconditional) probabilities, conditional probabilities of events A ∈A given an

event B ∈A are values of a probability measure. This is stated in the following theorem.

(For a proof see SN-Th. 4.28.)

Theorem 3.16 (Conditional Probability Measure)

Let (Ω,A,P ) be a probability space, let B ∈A and assume P (B) > 0. Then the function

P B : A → [0,1] defined by

P B(A) = P (A |B ), ∀A ∈A , (3.4)

is a probability measure on (Ω,A ).

According to this theorem, for each B ∈A with P (B) > 0, the function P B is a probability

measure on (Ω,A ). Hence, according to Remark 3.8, the triple (Ω,A,P B) is a probability

space.

Definition 3.17 (Conditional Probability Measure)

Let (Ω,A,P ) be a probability space, B ∈A, and P (B) > 0. Then the function P B defined

by Equation (3.4) is called the B-conditional probability measure on (Ω,A ).

The function P B assigns to each event A ∈A its conditional probability given B . Of

course, if B and C are different events, the conditional probabilities P B(A) = P (A |B ) and

P C (A)= P (A |C ) can differ from each other.

Example 3.18 (Joe and Ann With Randomized Assignment) Consider the example pre-

sented in Table 3.1. We specify the B-conditional probability measure P B : A → [0,1] for

the event
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B =
{

(Joe,yes,−), (Joe,yes,+), (Ann,yes,−), (Ann,yes,+)
}

that the drawn person is treated. Using the probabilities of the elementary events displayed

in the second column of Table 3.1 and Rule (ii) of SN-Box 4.1, we compute

P (B) = P
({

( Joe,yes,−), ( Joe,yes,+), (Ann,yes,−), (Ann,yes,+)
})

= P
(

{ ( Joe,yes,−)}
)

+P
(

{ ( Joe,yes,+)}
)

+P
(

{ (Ann,yes,−)}
)

+P
(

{ (Ann,yes,+)}
)

= .04+ .16+ .12+ .08 = .4.

For the first two elementary events,

P B({ω1}) = P B({(Joe,no,+)}) = P B({ω2}) = P B({(Joe,no,−)}) = 0,

because the intersections {(Joe,no,−)}∩B and {(Joe,no,+)}∩B are the empty set. For the

next two elementary events, the B-conditional probabilities are

P B({ω3}) = P B
(

{(Joe,yes,−)}
)

=
P

(

{(Joe,yes,−)}∩B
)

P (B )
=

.04

.4
= .1

and

P B({ω4}) = P B
(

{(Joe,yes,+)}
)

=
P

(

{(Joe,yes,+)}∩B
)

P (B )
=

.16

.4
= .4.

For the next two elementary events,

P B({ω5}) = P B
(

{(Ann,no,−)}
)

= P B({ω6}) = P B
(

{(Ann,no,+)}
)

= 0,

because again {(Ann,no,−)}∩B = {(Ann,no,+)}∩B = Ø. Finally, for the last two elementary

events, the B-conditional probabilities are

P B({ω7}) = P B
(

{(Ann,yes,−)}
)

=
P

(

{(Ann,yes,−)}∩B
)

P (B )
=

.12

.4
= .3

and

P B({ω8}) = P B
(

{(Ann,yes,+)}
)

=
P

(

{(Ann,yes,+)}∩B
)

P (B )
=

.08

.4
= .2.

These eight probabilities are summarized in the last column of Table 3.1.

Except for Ø, all other events A ∈A are unions of these elementary events. Because the

elementary events are disjoint, the probabilities of their unions can easily be computed

using finite additivity of a probability measure [see Rule (ii) of SN-Box 4.1]. For example,

the B-conditional probability of the event

C =
{

(Joe,no,+), (Joe,yes,+), (Ann,no,+), (Ann,yes,+)
}

that the sampled person has success is

P B(C ) = P B
({

(Joe,no,+), (Joe,yes,+), (Ann,no,+), (Ann,yes,+)
})

= P B
(

{ ( Joe,no,+)}
)

+P B
(

{ ( Joe,yes,+)}
)

+P B
(

{ (Ann,no,+)}
)

+P B
(

{ (Ann,yes,+)}
)

= 0+ .4+0+ .2 = .6.

⊳
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Example 3.19 (Nonorthogonal Two-Factorial Experiment) Consider again the example

presented in Table 1.5. For the event

A = {Tom ,Tim }×ΩX ×ΩY

that the sampled person has status low, we specify its B-conditional probability, where

B = ΩU × {treatment 1}×ΩY

is the event that the drawn person receives treatment 1. According to the second row of the

last column of Table 1.6, P (B) = 1/3. Then, using the probabilities displayed in Table 1.5,

P B(A) =
P

(

{Tom ,Tim }×ΩX ×ΩY ∩ ΩU × {treatment 1}×ΩY

)

P (B)
[Eqs. (3.3), (3.4)]

=
(10/60+18/60) ·1/8

1/3
=

7/120

1/3
=

7

40
. [P (A∩B) = P (A |B) ·P (B)]

This result is consistent with the probabilities displayed in Table 1.7. Again note the dis-

tinction between the two measures P and P B. While P B(A)= 7/40, the probability of A with

respect to the measure P is P (A) = 2/8 (see again Table 1.5.) ⊳

In the following lemma we consider the relationship between conditional probabilities

with respect to the measures P B and P . (For a proof see SN-Lemma 4.30.)

Lemma 3.20 (Conditional Probabilities With Respect to P B)

Let (Ω,A,P ) be a probability space. If A,B,C ∈A and P (B ∩C ) > 0, then

P B(A |C ) = P (A |B ∩C ). (3.5)

According to this lemma, the C-conditional probability of the event A with respect to the

B-conditional probability measure P B is identical to the (B ∩C )-conditional probability of

A with respect to the probability measure P .

According to the following lemma, the measure P B is absolutely continuous with respect

to P , that is,

∀A ∈A : P (A)= 0 ⇒ P B(A)= 0. (3.6)

Hence, if A is an event such that P (A) = 0, then the B-conditional probability of A is null as

well. Proposition (3.6) is denoted by P B ≪ P [see SN-Def. 3.70 (i)]. (For a proof of Lemma

3.21 see SN-Lemma 4.32.)

Lemma 3.21 (Absolute Continuity of a Conditional Probability Measure)

Let (Ω,A,P ) be a probability space, B ∈A, and P (B) > 0. Then P B is absolutely contin-

uous with respect to P, that is, P B ≪ P.

Remark 3.22 (P is not Necessarily Absolute Continuous With Respect to P X=x ) In contrast

to P B ≪ P , which always holds if P (B) > 0, the proposition P ≪ P B does not always hold

(see Example 3.23). ⊳
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Table 3.2. No treatment for Joe

Outcomes ωi Observables Conditional expectations
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0
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)

E
X
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1
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)

ω1 = ( Joe, no, −) .15 .1875 0 Joe 0 0 .7 .512 0 .7 99

ω2 = ( Joe, no, +) .35 .4375 0 Joe 0 1 .7 .512 0 .7 99

ω3 = ( Joe, yes, −) 0 0 0 Joe 1 0 99 .4 0 .7 99

ω4 = ( Joe, yes, +) 0 0 0 Joe 1 1 99 .4 0 .7 99

ω5 = (Ann, no, −) .24 .3 0 Ann 0 0 .2 .512 .5 .2 .4

ω6 = (Ann, no, +) .06 .075 0 Ann 0 1 .2 .512 .5 .2 .4

ω7 = (Ann, yes, −) .12 0 .6 Ann 1 0 .4 .4 .5 .2 .4

ω8 = (Ann, yes, +) .08 0 .4 Ann 1 1 .4 .4 .5 .2 .4

Example 3.23 (No Treatment for Joe) In the example displayed in Table 3.2, the event

B =
{

(Joe,yes,−), (Joe,yes,+), (Ann,yes,−), (Ann,yes,+)
}

that the drawn person is treated, has the probability P (B) = .2 and the B-conditional prob-

ability of the event

A =
{

(Joe,no,−), (Joe,no,+), (Joe,yes,−), (Joe,yes,+)
}

that Joe is drawn is P B(A)= 0, whereas P (A) = .5. ⊳

3.2 Random Variable

Although a probability space contains all information about the random experiment con-

sidered, this information is not yet processed well enough to be easily grasped. Random

variables and their expectations, variances, covariances, and distributions are important

concepts for processing the information contained in a probability space and, in particu-

lar, in a probability measure.

Remark 3.24 (Inverse Images) In Definition 3.25 we will use the concept of the inverse

image of a set A ′ under a mapping Y with domain Ω and co-domain Ω
′
Y , which will be

abbreviated by Y : Ω→Ω
′
Y . We use the notation Y −1(A ′)

Y −1(A ′) := {ω ∈Ω: Y (ω) ∈ A ′ }, A ′
∈A

′
X . (3.7)

Other notations for inverse images under Y are {Y ∈A ′} = Y −1(A ′) and {Y =y } = Y −1({y }). If

(Ω,A,P ) is a probability space, then according to this definition, the inverse image Y −1(A ′)

is the event that Y takes on a value in the set A ′.
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In Definition 3.25 we require that all inverse images Y −1(A ′) are elements of the σ-alge-

bra A on Ω. Because the measure P : A → [0, 1] assigns a probability to all elements of A,

the probabilities P [Y −1(A ′)] of these inverse images are determined by P . The measurable

space (R,B) occurring in Definition 3.25 refers to the set R :=R∪ {−∞,+∞} and the Borel

σ-algebra B on this set (for more details see SN-section 1.2.2). ⊳

Definition 3.25 (Random Variable)

Let (Ω,A,P ) be a probability space and (Ω′
Y ,A ′

Y ) a measurable space. Then the map-

ping Y : Ω→ Ω
′
Y is called a random variable on (Ω,A,P ) with value space (Ω′

Y ,A ′
Y ), if

Y −1(A ′) ∈ A , ∀A ′
∈A

′
Y . (3.8)

If (Ω′
Y ,A ′

Y ) = (R,B), then Y is called real-valued, and if (Ω′
Y ,A ′

Y ) = (R,B), then Y is

called numerical.

Example 3.26 (Indicator of an Event) Let (Ω,A,P ) be a probability space, A ∈A, and con-

sider the measurable space (R,B). Then 1A : Ω→R defined by

1A(ω) =

{

1, if ω ∈ A

0, otherwise
(3.9)

is a random variable on (Ω,A,P ) with value space (R,B). It is called the indicator of (the

event) A. If we consider the event {X=x } = {ω ∈Ω: X (ω) = x }, then we also use the notation

1X=x .

There are four different inverse images of sets B ∈B under 1A:

∀B ∈B : 1−1
A (B) =























A, if 0 ∉B and 1 ∈B

Ac , if 0 ∈B and 1 ∉B

Ω, if 0 ∈B and 1 ∈B

Ø, if 0 ∉B and 1 ∉B.

If A ∈A , then all four inverse images are elements of A , which follows from the definition

of a σ-algebra (see Def. 3.3). Note that the set of these four inverse images is a σ-algebra on

Ω. ⊳

Example 3.27 (Joe and Ann With Randomized Assignment) In Equation (3.2) we speci-

fied the set Ω = ΩU ×ΩX ×ΩY of possible outcomes of this random experiment. The

third column of Table 3.1 displays the person variable U assigning an element of the set

ΩU = { Joe , Ann } to each possible outcome ωi ∈ Ω. Hence, U is a mapping with domain

Ω and co-domain ΩU, that is, U : Ω→ΩU. If we choose A = P (Ω) to be the power set of

Ω and the measurable space (ΩU,AU) with AU = P (ΩU) =
{

{ Joe }, { Ann },ΩU,Ø
}

, then the

mapping U : Ω→ΩU is a random variable on (Ω,A,P ) with value space (ΩU,AU). The four

inverse images of elements A ′ ∈AU are

U −1({ Joe }) = { Joe }×ΩX ×ΩY = {ω1, . . . ,ω4}

U −1({ Ann }) = { Ann }×ΩX ×ΩY = {ω5, . . . ,ω8}

U −1(ΩU) = Ω = {ω1, . . . ,ω8}
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U −1(Ø) = Ø.

Because we choose A to be the power set of Ω, all four inverse images U −1(A ′), A ′∈AU,

are necessarily elements of A [see Eq. (3.8)]. Note again that the set of these four inverse

images is a σ-algebra on Ω.

The fourth column of Table 3.1 displays the treatment variable X assigning an element

of the set R, the numbers 0 and 1, to each possible outcome ωi ∈Ω. If we choose A =P (Ω)

to be the power set of Ω and the measurable space (R,B), then the mapping X : Ω→R is a

random variable on (Ω,A,P ) with value space (R,B). ⊳

Example 3.28 (Nonorthogonal Two-Factorial Experiment) In Example 3.2 we specified

the set Ω = ΩU ×ΩX ×ΩY of possible outcomes of this random experiment. The person

variable U appearing in Table 1.5 is defined by

∀ω ∈Ω: U (ω) =



























Tom , if ω ∈ {Tom }×ΩX ×ΩY

Tim , if ω ∈ {Tim }×ΩX ×ΩY

.

.

.

Mia , if ω ∈ {Mia }×ΩX ×ΩY.

(3.10)

Because we chose A to be the product of the σ-algebras AU = P (ΩU), AX = P (ΩX), and

the Borel σ-algebra B (see Example 3.6), the definition of a product of σ-algebras (see SN-

Def. 1.31) implies that all inverse images U −1(A ′), A ′ ∈AU, are elements of A [see again

Eq. (3.8)]. Hence, U is a random variable on (Ω,A,P ) with value space (ΩU,AU).

The treatment variable X : Ω→R appearing in Table 1.5 is defined by

∀ω ∈Ω: X (ω) =











0, if ω ∈ΩU × {control }×ΩY

1, if ω ∈ΩU × {treatment 1}×ΩY

2, if ω ∈ΩU × {treatment 2}×ΩY.

(3.11)

Again, because we chose A to be the product of the σ-algebras AU =P (ΩU), AX =P (ΩX),

and the Borel σ-algebra B, the definition of a product of σ-algebras implies that all in-

verse images X −1(B), B ∈B, are elements of A [see again Eq. (3.8)]. Hence, X is a random

variable on (Ω,A,P ) with value space (R,B) (see also Exercise 3-3). The inverse images

X −1(B), B ∈B, are

X −1(B) =































































ΩU × {control }×ΩY, if 0 ∈B,1,2 ∉B

ΩU × {treatment 1 }×ΩY, if 0,2 ∉B,1 ∈B

ΩU × {treatment 2 }×ΩY, if 0,1 ∉B,2 ∈B

ΩU × {treatment 0, treatment 1}×ΩY, if 0,1 ∈B,2 ∉B

ΩU × {treatment 0, treatment 2}×ΩY, if 0,2 ∈B,1 ∉B

ΩU × {treatment 1, treatment 2}×ΩY, if 0 ∉B,1,2 ∈B

Ω, if 0,1,2 ∈B

Ø, if 0,1,2 ∉B.

(3.12)

Note that the set of these eight inverse images is a σ-algebra on Ω.

The (qualitative) covariate Z : Ω→Ω
′
Z appearing in Table 1.5 is defined by
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∀ω ∈Ω: Z (ω) =











low, if ω ∈ {Tim ,Tom }×ΩX ×ΩY

med, if ω ∈ { Joe , . . . , Eva }×ΩX ×ΩY

hi, if ω ∈ {Sue ,Mia }×ΩX ×ΩY.

(3.13)

For this random variable we choose the value space
(

Ω
′
Z ,P (Ω′

Z)
)

. Again, because we

chose A to be the product of the σ-algebras AU = P (ΩU), AX = P (ΩX), and the Borel

σ-algebra B, the definition of a product of σ-algebras implies that all inverse images

Z −1(B), B ∈P (Ω′
Z ), are elements of A [see again Eq. (3.8)].

The inverse images Z −1(B), B ∈P (Ω′
Z ), are

Z −1({low }) = {Tim ,Tom }×ΩX ×ΩY

Z −1({med }) = { Joe , Jim , Ann , Eva }×ΩX ×ΩY

Z −1({hi }) = {Sue ,Mia }×ΩX ×ΩY

Z −1({low, med }) = {Tim ,Tom , Joe , Jim , Ann , Eva }×ΩX ×ΩY (3.14)

Z −1({low, hi }) = {Tim ,Tom ,Sue ,Mia }×ΩX ×ΩY

Z −1({med, hi }) = { Joe , Jim , Ann , Eva ,Sue ,Mia }×ΩX ×ΩY

Z −1(Ω′
Z) = Ω

Z −1(Ø) = Ø.

Note again that the set of these eight inverse images is a σ-algebra on Ω. As shown in

Theorem 3.29 this is not a coincidence. ⊳

3.2.1 σ-Algebra Generated by a Random Variable

In Examples 3.26, 3.27, and 3.28 we already noted that the set of all inverse images under

the random variable considered is aσ-algebra onΩ. In a sense, such aσ-algebra carries the

information associated with the random variable considered; it contains all events that

can be represented by that random variable. In the following theorem we formulate the

general proposition. This theorem and Definition 3.31 are of fundamental importance for

probability theory.

Theorem 3.29 (σ-Algebra Generated by a Random Variable)

Let Y be a random variable on (Ω,A,P ) with value space (Ω′
Y ,A ′

Y ). Then

Y −1(A ′
Y ) :=

{

Y −1(A ′): A ′
∈A

′
Y

}

(3.15)

is a σ-algebra on Ω.

For a proof see Klenke (2013, Theorem 1.81, p. 33).

Remark 3.30 (Smallest σ-Algebra) Note that Y −1(A ′
Y ) is the smallest σ-algebra C on Ω

such that Y −1(A ′
Y ) ⊂ C . ⊳

The set Y −1(A ′
Y ) contains all sets in A that can be represented by Y and elements of

A
′

Y . Because Y −1(A ′
Y ) is important, it has an own name and an alternative notation, which

is sometimes more convenient.
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Definition 3.31 (σ-Algebra Generated by a Random Variable)

The set Y −1(A ′
Y ) defined by Equation (3.15) is called the σ-algebra generated by Y and

A
′

Y . If there is no ambiguity about A
′

Y , then we also say that Y −1(A ′
Y ) is generated by

Y and use the notation

σ(Y ) := Y −1(A ′
Y ). (3.16)

Remark 3.32 (Measurability of a Random Variable) If Y is a random variable on a proba-

bility space (Ω,A,P ), C ⊂A is a σ-algebra, and

σ(Y ) ⊂ C , (3.17)

then we say that Y is C-measurable or measurable with respect to C . If Z is a random

variable Z on (Ω,A,P ) and

σ(Y ) ⊂ σ(Z ), (3.18)

then we say that Y is Z-measurable or measurable with respect to Z . (See SN-chapter 2 for

more details on this and other concepts related to measurability of mappings.) ⊳

3.2.2 Distribution of a Random Variable

In Definition 3.25 we require that the inverse images Y −1(A ′) of all sets A ′∈A
′

Y under Y

are elements of the σ-algebra A on Ω. Using the notation introduced in Definition 3.31,

this is equivalent to requiring σ(Y ) ⊂A . This property allows us to define the distribution

of a random variable as follows:

Definition 3.33 (Distribution of a Random Variable)

Let Y be a random variable on (Ω,A,P ) with value space (Ω′
Y ,A ′

Y ). Then the function

PY : A
′

Y → [0,1] defined by

PY (A ′) = P [Y −1(A ′)], ∀A ′
∈A

′
Y , (3.19)

is called the distribution of Y (with respect to P).

Remark 3.34 (A New Probability Space) Definition 3.33 implies that every random vari-

able Y on a probability space (Ω,A,P ) has a distribution PY . Furthermore, PY : A
′

Y → [0,1]

is also a measure, the image measure of P under X (see SN-Th. 2.80 and SN-Def. ??).

Because PY (Ω′
Y ) = P (Ω) = 1, we can conclude that PY is a probability measure, and

(Ω′
Y ,A ′

Y ,PY ) is also a probability space. ⊳

Example 3.35 (Joe and Ann With Randomized Assignment) In Example 3.27 we showed

that U is random variable on (Ω,A,P ) with value space (ΩU,AU), where ΩU = { Joe , Ann }

and AU =
{

{ Joe }, { Ann },ΩU,Ø
}

. The distribution of U is

PU ({ Joe }) = P [U −1({ Joe })] = P ({ω1, . . . ,ω4}) = P ({ω1})+ . . .+P ({ω4}) = .5,

PU ({ Ann }) = P [U −1({ Ann })] = P ({ω5, . . . ,ω8}) = P ({ω5})+ . . .+P ({ω8}) = .5,
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PU ({ΩU}) = P [U −1(ΩU)] = P ({ω1, . . . ,ω8}) = P ({ω1})+ . . .+P ({ω8}) = 1,

PU ({Ø}) = P [U −1(Ø)] = P (Ø) = 0.

In Example 3.27 we also specified the random variable X on (Ω,A,P ) with value space

(R,B). The distribution of X is as follows:

∀B ∈B : PX (B) = P [X −1(B)] =























P ({ω1,ω2,ω5,ω6}) = .6, if 0∈B and 1 ∉B

P ({ω3,ω4,ω7,ω8}) = .4, if 0∉B and 1 ∈B

P (Ω) = 1, if 0∈B and 1 ∈B

P (Ø) = 0, if 0∉B and 1 ∉B.

Note that in this equation we assign a probability to all elements B ∈ B, not only to four

elements of B. ⊳

Example 3.36 (Nonorthogonal Two-Factorial Experiment) In Example 3.28 we defined

the random variable U with value space (ΩU,AU), where AU = P (ΩU). The distribution

of U can be specified as follows:

∀{u}∈AU : PU ({u}) = P [U −1({u})] =
1

8
. (3.20)

Because, except for the empty set, all A ′ ∈AU are unions of the singletons {u} and the

singletons are disjunct, the probabilities of all elements A ′∈AU can be computed as a sum

of the probabilities of these singletons. For example, the probability of sampling a male

person is

PU ({Tom ,Tim , Joe , Jim }) = P [U −1({Tom ,Tim , Joe , Jim })]

= PU ({Tom })+PU ({Tim })+PU ({ Joe })+PU ({ Jim })

=
1

8
+

1

8
+

1

8
+

1

8
=

1

2

[see SN-Box 4.1 (ii)]. Note that the distribution of U , that is, the function PU : AU → [0,1],

assigns a probability PU (A ′) to 28 = 256 sets A ′∈AU.

In Example 3.28 we also specified the random variable X with value space (R,B). The

distribution of X can be specified as follows:

∀B ∈B : PX (B) = P [X −1(B)]

=































































P (ΩU × {control }×ΩY) = 1/3, if 0 ∈B,1,2 ∉B

P (ΩU × {treatment 1 }×ΩY) = 1/3, if 0,2 ∉B,1 ∈B

P (ΩU × {treatment 2 }×ΩY) = 1/3, if 0,1 ∉B,2 ∈B

P (ΩU × {treatment 0, treatment 1}×ΩY) = 2/3, if 0,1 ∈B,2 ∉B

P (ΩU × {treatment 0, treatment 2}×ΩY) = 2/3, if 0,2 ∈B,1 ∉B

P (ΩU × {treatment 1, treatment 2}×ΩY) = 2/3, if 0 ∉B,1,2 ∈B

P (Ω) = 1, if 0,1,2 ∈B

P (Ø) = 0, if 0,1,2 ∉B.

Although there are only eight elements in σ(X ), this equation assigns a probability to all

elements B ∈B. The number of such elements is uncountable. ⊳
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3.2.3 Expectation of a Numerical Random Variable

In this section we introduce the concept of the expectation of a numerical random vari-

able. Later we will see that variances, covariances and correlations are expectations of spe-

cial random variables (see section 3.2.4). All these quantities describe important proper-

ties of numerical random variables, although, in general, they do not determine the com-

plete distribution.

In the following definition we use the concept of a measure integral that is well-known

in measure theory (for an introduction see SN-chapter 3.) Also note that a random vari-

able Y is called quasi-integrable with respect to the measure P if
∫

Y +d P or
∫

Y −d P are

finite, where Y + and Y −denote the positive and negative parts of Y, respectively (see SN-

Rem. 2.62 and SN-Def. 3.28).

Definition 3.37 (Expectation of a Numerical Random Variable)

Let Y be a numerical random variable on (Ω,A,P ) that is quasi-integrable with respect

to P. Then we define

E (Y ) :=

∫

Y dP , (3.21)

call it the expectation of Y (with respect to P), and say that it exists.

Remark 3.38 (Existence of the Expectation) Note that E (Y ) can be infinite. Furthermore,

if E (Y ) exists then we also say that Y is a random variable with expectation E (Y ). If Y is not

quasi-integrable with respect to P and therefore also not P-integrable, then we say that the

expectation of Y with respect to P does not exist. ⊳

Remark 3.39 (Notation and Synonymous Terms) A synonym for expectation is expecta-

tion value. The reference to the measure P is usually omitted if the context is unambigu-

ous. If we consider the expectation with respect to another probability measure on (Ω,A ),

for example, the conditional probability measure P B (see Def. 3.17), then we adapt the

notation as follows:

E B(Y ) :=

∫

Y dP B. (3.22)

⊳

Remark 3.40 (Conditional Expectation Given the Event B) The expectation E B(Y ) of Y

with respect to the B-conditional probability measure P B is also called the B-conditional

expectation value of Y or the conditional expectation value of Y given the event B . We also

use the notation

E (Y |B) := E B(Y ). (3.23)

Note that this definition presumes that B ∈A such that P (B) > 0. ⊳

Remark 3.41 (Numerical Random Variable With a Finite Number of Values) Assume that

Y has only a finite number of different values y1, . . . , yn ∈R, that is, assume that the image

Y (Ω) of Ω under Y is {y1, . . . , yn } ⊂R. Then the expectation E (Y ) exists and



3.2 Random Variable 59

E (Y ) =

n
∑

i =1

yi ·P (Y =yi ), (3.24)

using the notation P (Y =yi ) := P [Y −1({yi })] [see SN-Rem. 6.5]. If PY denotes the distribu-

tion of Y , then we may also write

E (Y ) =

n
∑

i =1

yi ·PY ({yi }). (3.25)

Hence, in this case the expectation of Y is simply the weighted sum of its values,

each one weighted by its probability P (Y =yi ) = PY ({yi }). Correspondingly, if Y (Ω) =

{y1, . . . , yn } ⊂R, then

E (Y |B) =

n
∑

i =1

yi ·P (Y =yi |B). (3.26)

If, additionally, B = {X=x }, then we also use the notation

E (Y |X=x) := E (Y |B) (3.27)

and call it the (X=x)-conditional expectation value of Y . For B = {X=x }, Equation (3.23)

yields

E (Y |X=x) = E X=x(Y ), (3.28)

and Equation (3.26) can also be written

E (Y |X=x) =

n
∑

i =1

yi ·P (Y =yi |X=x). (3.29)

Note again that in this definition of E (Y |X=x) we presume P (X=x) > 0 (see Def. 3.17),

which implies that E (Y |X=x) is a uniquely defined number (see Exercise 3-4). In Def-

inition 3.64 we will introduce a more general definition that applies without assuming

P (X=x) > 0. ⊳

Example 3.42 (Expectation of an Indicator) If (Ω,A,P ) is a probability space and 1A is

the indicator of A ∈A, then Equations (3.24) and (3.9) yield

E (1A) = 0 ·P (1A =0) + 1 ·P (1A =1) = P (1A =1) = P (A). (3.30)

Considering the event {Y =y } and using the notation 1Y =y := 1{Y =y}, this yields

E (1Y =y ) = P (Y =y). (3.31)

⊳

Example 3.43 (Conditional Expectation Value of an Indicator) Correspondingly, consid-

ering the indicator 1A of an event A ∈A , Equations (3.26) and (3.9) yield

E (1A |B) = 0 ·P (1A =0 |B) + 1 ·P (1A =1 |B) = P (1A =1 |B) = P (A |B). (3.32)

Finally, if B = {X=x } and 1Y =y = 1{Y =y}, we introduce the notation

P (Y =y |X=x) := E (1Y =y |B) (3.33)

and call this number the (X=x)-conditional probability of (the event) {Y =y }. ⊳
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Example 3.44 (Joe and Ann With Randomized Assignment) Consider the random exper-

iment displayed in Table 3.1 and define the event

B =
{

(Joe,yes,−), (Joe,yes,+), (Ann,yes,−), (Ann,yes,+)
}

= ΩU × {yes }×ΩY ,

that the drawn person is treated (irrespective of whether or not the person is treated and

success occurs) and the event

C =
{

(Joe,no,+), (Joe,yes,+), (Ann,no,+), (Ann,yes,+)
}

= ΩU ×ΩX × {+} .

that success occurs (irrespective of which person is drawn and whether or not the person

is treated). In Table 3.1 we assigned probabilities to each elementary event {ωi },ωi ∈Ω and

defined X := 1B , the treatment variable, as well as Y := 1C the outcome variable. Applying

Equation (3.30) to the indicator 1B yields:

E (X ) = E (1B ) = P (B)

= P [{(Joe,yes,−)}] + P [{(Joe,yes,+)}] + P [{(Ann,yes,−)}] + P [{(Ann,yes,+)}]

= .04 + .16 + .12 + .08 = .4.

Similarly, for the indicator 1C , we obtain

E (Y ) = E (1C ) = P (C )

= P [{(Joe,no,+)}] + P [{(Joe,yes,+)}] + P [{(Ann,no,+)}] + P [{(Ann,yes,+)}]

= .21 + .16 + .06 + .08 = .51.

Correspondingly, Equations (3.26) and (3.9) yield

E (Y |X =1) = E (1C |B) = P (C |B) =
P (B ∩C )

P (B)
=

P
({

(Joe,yes,+), (Ann,yes,+)
})

P (B)

=
.16+ .08

.4
= .6.

Hence, the conditional probability of success given treatment is .6. In contrast,

E (Y |X =0) = E (1C |B c ) = P (C |B c ) =
P (B c ∩C )

P (B c )
=

P
({

(Joe,no,+), (Ann,no,+)
})

P (B c )

=
.21+ .06

.6
= .45.

Hence, in this example, in which X and U are independent,

E (Y |X =1)−E (Y |X =0) = .15,

which is identical to the average of the two individual treatment effects. In contrast, if we

compute the corresponding conditional expectation values for the random experiment

presented in Table 1.2, then we receive

E (Y |X =1)−E (Y |X =0) = .42− .6 =−.18,

while the two individual treatment effects remain unchanged. They are
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E (Y |X =1,U =Joe )−E (Y |X =0,U =Joe ) = .8− .7 = .1

for Joe and

E (Y |X =1,U =Ann )−E (Y |X =0,U =Ann ) = .4− .2 = .2

for Ann (see Example 3.14 and Table 1.2). Hence, in the example of Table 1.2, the differ-

ence E (Y |X =1)−E (Y |X =0) =−.18 is completely misleading if interpreted as the average

effect of the treatment. ⊳

3.2.4 Variance, Covariance, and Correlation

Variance and standard deviation are the most important parameters describing the vari-

ability of a random variable. They are defined as follows:

Definition 3.45 (Variance and Standard Deviation)

Let Y be a numerical random variable on a probability space (Ω,A,P ) and assume that

E (Y 2) is finite. Then the variance of Y is defined by

Var(Y ) := E
(

[Y −E (Y )]2
)

, (3.34)

and the standard deviation of Y is the positive square root of the variance, that is,

SD(Y ) :=
√

Var(Y ). (3.35)

According to this definition, Var (Y ) is the expectation of the squared mean centered

random variable Y −E (Y ). Note that variances and standard deviations are nonnegative.

The variance of Y is also denoted by σ
2
Y and its standard deviation by σY . Important prop-

erties of variances are summarized in SN-Box 6.2.

While the variance quantifies the variability of a numerical random variable, the co-

variance quantifies the degree of co-variation of two numerical random variables, that is,

the degree to which the two variables vary together in the following sense: If one variable

takes on a large value (i. e., large positive deviation from its expectation), then the other

one tends to take on a large value as well. Furthermore, if one variable takes on a small

value (i. e., large negative deviation from its expectation), then the other one tends to take

on a small value, too. In this case the covariance will be positive. However, the covariance

may also be a negative real number. In this case, the two random variables co-vary in the

following sense: If one variable takes on a large value, then the other one tends to take on

a small value. Furthermore, if one variable takes on a small value, then the other one tends

to take on a large value.

Definition 3.46 (Covariance)

Let X ,Y be two numerical random variables on the probability space (Ω,A,P ) such that

E (X 2) and E (Y 2) are finite. Then the covariance of X and Y is defined by

Cov (X ,Y ) := E
(

[X −E (X )] · [Y −E (Y )]
)

. (3.36)
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Comparing Equations (3.34) and (3.36) to each other shows that the variance is the co-

variance of a numerical random variable with itself.

Remark 3.47 (Correlated Numerical Random Variables) According to this definition, the

covariance of X and Y is the expectation of the product of the mean centered variables

X −E (X ) and Y −E (Y ). Hence, a covariance can be negative, zero, or positive. If the co-

variance is different from zero, then we say that X and Y are correlated ; otherwise, we say

that they are uncorrelated. The most important rules of computation for covariances are

summarized in SN-Box 7.1. ⊳

Note that the covariance is not invariant under multiplication with constants [scale

transformations; see SN-Box 7.1 (iii)] of the random variables involved. In contrast, the

correlation, which quantifies the strength of the same kind of dependence is invariant

under scale transformations (see SN-Rem. 7.22).

Definition 3.48 (Correlation)

Let X ,Y be two numerical random variables on the probability space (Ω,A,P ) such that

E (X 2) and E (Y 2) are finite. Then the correlation of X and Y is defined by

Corr (X ,Y ) :=











Cov (X ,Y )

SD(X ) ·SD(Y )
, if SD (X ), SD(Y ) > 0,

0, otherwise.

(3.37)

Remark 3.49 (Correlation of a Random Variable With Itself) Assume that Var (X ) > 0. Be-

cause Cov (X , X ) = Var (X ) = SD (X ) ·SD(X ), Equation (3.37) implies that Corr (X , X ) = 1.

Similarly, because Cov (X ,−X ) = −Var (X ) =−SD(X ) ·SD (X ), Equation (3.37) implies that

Corr (X ,−X ) =−1. ⊳

The covariance between two numerical random variables and their correlation quan-

tify the strength of their dependence that can be described by a linear quasi-regression

sometimes also referred to as the ordinary least-squares regression.

Definition 3.50 (Linear Quasi-Regression)

Let X ,Y be real-valued random variables on the probability space (Ω,A,P ) such that

E (X 2) and E (Y 2) are finite and Var(X ) > 0, and define the function MSE : R2 →R by

MSE (a0, a1) = E
(

[Y − (a0 +a1 X )]2
)

, ∀(a0, a1) ∈R
2. (3.38)

Let (α0,α1) ∈R
2 minimize MSE . Then the function f : R→R defined by

f (x) = α0 +α1x, ∀x ∈R, (3.39)

is called the linear quasi-regression of Y on X . The composition of X and f is denoted

by Qlin(Y |X ), that is,

Qlin(Y |X ) = f (X ) = α0 +α1 X . (3.40)
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Remark 3.51 (Distinguishing Between f and f (X )) According to Equation (3.39) the lin-

ear quasi-regression f assigns a real number to all real numbers. This applies even if X

only takes on two different real values. In contrast, the number of different values of the

composition f (X ) =Qlin(Y |X ) is smaller than or equal to the number of values of X , pro-

vided that X takes on a finite number of values only. Also note that Qlin(Y |X ) is a ran-

dom variable on (Ω,A,P ), whereas the linear quasi-regression f is a random variable on

(Ω′
X ,A ′

X ,PX ). ⊳

3.3 Conditional Expectation and Related Concepts

In this book we build on the concept of a conditional expectation and some related con-

cepts such as a conditional expectation with respect to a conditional probability measure

and a partial conditional expectation. A conditional expectation E (Y |X ) is used to de-

scribe how the conditional expectation values E (Y |X=x) of a numerical random vari-

able Y depend on the values x of a (not necessarily numerical) random variable X . In

many cases conditional expectations are what we try to estimate in statistical modeling.

As shown in Example 3.44, in some applications a conditional expectation E (Y |X ) can be

used to describe a certain kind of causal dependency, in other cases such causal inter-

pretations of E (Y |X ) would lead us astray. In a sense, this book is devoted to spell out the

conditions under which causal interpretations of a conditional expectation are warranted.

3.3.1 Conditional Expectation E (Y |X )

The concept of a conditional expectation has been introduced by Kolmogorov (1933/1977),

together with the axioms of probability. (For an English translation see Kolmogorov, 1956).

A detailed introduction to conditional expectations is presented in SN-chapters 9 to 11. In

this section we just present the definition, some crucial properties, and simple examples.

We start with the a special case and then turn to the general definition.

Definition 3.52 (Conditional Expectation if X is Discrete)

Let Y be a numerical random variable on (Ω,A,P ) that is nonnegative or has a finite

expectation and let the random variable X be a random variable on (Ω,A,P ) with

value space (Ω′
X ,A ′

X ). If X (Ω) = {x1, . . . , xm } such that, for all i = 1, . . . ,m, {xi } ∈ A
′

X

and P (X =xi ) > 0, then the X-conditional expectation of Y is defined by

E (Y |X ) :=
m
∑

i=1

E (Y |X =xi ) ·1X=xi
. (3.41)

Remark 3.53 (Values of E (Y |X )) Because the indicators 1X=x i
are random variables on

(Ω,A,P ) (see Example 3.26), Equation (3.41) shows that E (Y |X ) is a random variable on

(Ω,A,P ) (see SN-Example 2.61) as well and that the values of E (Y |X ) are the conditional

expectation values E (Y |X =xi ). In more formal terms,

∀ω ∈Ω: E (Y |X )(ω) = E (Y |X =xi ), if ω ∈ {X =xi }. (3.42)
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Also note that, under the assumptions of Definition 3.52, the conditional expectation is

uniquely defined. Note that this does not apply to the general concept of a conditional

expectation, which is introduced in the sequel. ⊳

In the following general definition of E (Y |X ) we use the concept of a σ-algebra σ(X )

generated by random variable X (see Def. 3.31) and the concept of measurability of a ran-

dom variable with respect to another one (see Rem. 3.32).

Definition 3.54 (Conditional Expectation)

Let X and Y be random variables on (Ω,A,P ) with value spaces (Ω′
X ,A ′

X) and (R,B),

respectively. Assume that Y is nonnegative or with finite expectation E (Y ). Then a nu-

merical random variable V on (Ω,A,P ) is called a version of the X-conditional expecta-

tion of Y with respect to P, if the following two conditions hold:

(a) σ(V ) ⊂ σ(X ).

(b) E (1C ·V ) = E (1C ·Y ), ∀ C ∈σ(X ).

If V satisfies (a) and (b), then we also use the notation E (Y |X ) :=V .

This definition also applies if X is continuous, which is the case, for example, if X has a

normal distribution. A version E (Y |X ) of the X -conditional expectation of Y is a random

variable on (Ω,A,P ), and according to condition (a) of Definition 3.54, E (Y |X ) is measur-

able with respect to X (cf. Rem. 3.32).

Remark 3.55 (The Set E (Y |X )) Note that there can be several random variables satisfy-

ing conditions (a) and (b). Therefore, we define E (Y |X ) to be the set of all random vari-

ables satisfying conditions (a) and (b) of Definition 3.54. Hence, E (Y |X ) denotes the set

of all versions of the X -conditional expectation of Y with respect to the measure P . ⊳

Remark 3.56 (P-Uniqueness) According to SN-Remark 10.15,

V ,V ∗
∈ E (Y |X ) ⇒ V =

P
V ∗, (3.43)

where V =
P

V ∗ is a shortcut for

P
({

ω ∈Ω: V (ω) =V ∗(ω)
})

= 1. (3.44)

If Equation (3.44) holds, then we say that V and V ∗ are P-equivalent or identical almost

surely with respect to P . If (3.43) holds, that is, if V =
P

V ∗ for all pairs V ,V ∗∈ E (Y |X ), then

we say that E (Y |X ) is P-unique. ⊳

Remark 3.57 (Implications of P-Almost Sure Identity) If two random variables are P-al-

most surely identical, then they have identical distributions, expectations, variances, and

covariances with other random variables provided that these expectations, variances, and

covariances exist [see SN-Box 6.1 (ix), SN-Box 6.2 (v), and SN-Box 7.1 (x)]. ⊳

Remark 3.58 (Conditional Probability Given a Random Variable) Let 1A denote the in-

dicator of the event A ∈A . We introduce the notation

P (A |X ) := E (1A |X ) (3.45)
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and call it the X -conditional probability of (the event) A (with respect to P ) (see SN-Remark

10.4). Furthermore, considering the event {Y =y } = {ω ∈Ω: Y (ω) = y }, we also use the no-

tation

P (Y =y |X ) := P ({Y =y } |X ) = E (1Y =y |X ). (3.46)

Note again that P (A |X ) and P (Y =y |X ) are X -measurable random variables on (Ω,A,P ).

⊳

Remark 3.59 (Multivariate X ) If X = (X1, . . . , Xn ) is an n-variate random variable on the

probability space (Ω,A,P ) (see SN-section 5.3), then a version of E (Y |X ) is also denoted

by E (Y |X1, . . . , Xn ). In the same vein, if Y = 1A or Y = 1X=x , then we use the notation

P (A |X1, . . . , Xn ) and P (Y =y |X1, . . . , Xn ), respectively. ⊳

Many important properties of a conditional expectation E (Y |X ) are gathered in SN-

Box 10.2. Some monotonicity properties of a conditional expectation E (Y |X ) are gathered

in SN-Box 10.3. A proposition on strict monotonicity is stated in the following lemma.

Reading this lemma, remember that Y >
P
α is defined by

P
(

{ω ∈Ω: Y (ω) ≤α}
)

= 0. (3.47)

Lemma 3.60 (Strict Monotonicity of a Conditional Expectation)

Let Y : Ω→R be a numerical random variable on (Ω,A,P ) that is nonnegative or has

a finite expectation, let X be a random variable on (Ω,A,P ) with value space (Ω′
X ,A ′

X ),

and let α ∈R. Then :

Y >
P
α ⇒ E (Y |X ) >

P
α. (3.48)

(Proof p. 74)

3.3.2 First Examples

Example 3.61 (Joe and Ann With Randomized Assignment) Consider again the example

presented in Table 3.1. In this table we already displayed the values .45 and .6 of the condi-

tional expectation E (Y |X ) = P (Y =1 |X ). This random variable satisfies conditions (a) and

(b) of Definition 3.54 (see Exercise 3-5). In this example, there is only one single version of

the X -conditional expectation of Y . That is, the set E (Y |X ) has only one single element.

Hence, in this example, E (Y |X ) is uniquely defined. This also holds for the conditional

expectation E (Y |X ,U ) specified in the same table. ⊳

Example 3.62 (No Treatment for Joe) Table 3.2 displays another example illustrating the

concept of a conditional expectation. In this example there are uncountably many ver-

sions of the (X ,U )-conditional expectation of Y. The column headed by E (Y |X ,U ) dis-

plays one such version. Another one is obtained if, in this column, we replace the value

99 by any other number. Suppose V = E (Y |X ,U ) is the version displayed in the table

and V ∗∈ E (Y |X ,U ) is another version obtained by assigning to ω3 and ω4 the (arbitrar-

ily chosen) number .8, leaving the assignments to the other ωi ∈Ω untouched. Obviously,

V =
P

V ∗. This illustrates that, in this example, the (X ,U )-conditional expectation of Y is

not uniquely defined. However, it is P-unique, because V =
P

V ∗, for all V ,V ∗∈ E (Y |X ,U ).

In contrast to E (Y |X ,U ), the conditional expectations E (Y |X ) and E (X |U ) are uniquely
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defined in this example. In other words, the sets E (Y |X ) and E (X |U ) consist of only one

single element, the random variables E (Y |X ) and E (X |U ), respectively, which are speci-

fied in Table 3.2. ⊳

3.3.3 Regression and Factorization of a Conditional Expectation

According to the following corollary, a version E (Y |X ) ∈ E (Y |X ) can always be written as

a composition g (X ) (sometimes also denoted by g ◦ X ) of X and a numerical function g

(see SN-Cor. 10.23).

Corollary 3.63 (Existence of the Factorization)

If the assumptions of Definition 3.54 hold and E (Y |X ) ∈ E (Y |X ), then there is a func-

tion g : Ω′
X →R such that g −1(B) ⊂A

′
X and

E (Y |X ) = g (X ). (3.49)

The function g occurring in Corollary 3.63 plays in important role. Among other things,

it is used for a general definition of the regression of Y on X .

Definition 3.64 (Factorization and Regression)

A function g : Ω′
X →R that satisfies g −1(B) ⊂A

′
X and Equation (3.49) is called a factor-

ization of E (Y |X ). If (Ω′
X ,A ′

X ) = (Rn, Bn), n ∈N, then g is also called an n-variate re-

gression of Y on X .

Remark 3.65 (Conditional Expectation vs. Regression) Hence, while a conditional expec-

tation E (Y |X ) = g (X ) is a random variable on (Ω,A,P ) with domain Ω, a factorization g

is a function with domain Ω
′
X . In fact, g is a numerical random variable on the probability

space (Ω′
X ,A ′

X ,PX ). If Ω′
X =R

n , then a factorization g is also called a regression of Y on X , or

a regression of Y on X1, . . . , Xn . As is true for a conditional expectation, there can be many

versions of a factorization and a regression. Note that the concept of a regression is de-

fined without any reference to a specific parameterization. (In contrast, cf. SN-Def. 12.32

for the concept of a linear regression). ⊳

3.3.4 Conditional Expectation Value E (Y |X=x)

A factorization of E (Y |X ) is also used for general definition of the concept of an (X=x)-

conditional expectation value. In contrast to the elementary definition in Equation (3.27),

in this definition we do not have to assume P (X=x) > 0.

Definition 3.66 ((X=x)-Conditional Expectation Value)

Let g : Ω′
X → R be a function satisfying g −1(B) ⊂ A

′
X and Equation (3.49). Then, for all

x ∈Ω
′
X , we define an (X=x)-conditional expectation value of Y by

E (Y |X=x) := g (x). (3.50)
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Remark 3.67 (Values of a Conditional Expectation) Let E (Y |X ) = g (X ) ∈ E (Y |X ). Then

∀ω ∈Ω: E (Y |X )(ω) = g (x) = E (Y |X=x), if ω ∈ {X=x} (3.51)

(see SN-Rem. 10.37). This equation also implies that the value of the random variable

E (Y |X ) is constant on all sets {X=x } = {ω ∈Ω: X (ω) = x }. ⊳

Remark 3.68 (Uniqueness of a Factorization) Note that E (Y |X=x) is uniquely defined

only if P (X=x) > 0. Similary, the concept of a regression of Y on X is not uniquely de-

fined. For two elements V ,V ∗ ∈ E (Y |X ) there can be different factorizations g and g∗

with V = g (X ) and V ∗ = g∗(X ). This is true even if V = V ∗. Hence, there can be differ-

ent factorizations of a single element V ∈ E (Y |X ) (see SN-Example 10.32). In other words,

V = g (X ) = g∗(X ) with g 6= g∗ is not necessarily contradictory. If g (X ) = g∗(X ) with g 6= g∗,

then g (x) = g∗(x) for all x ∈X (Ω), whereas g (x) = g∗(x) does not hold for all x ∈Ω
′
X . How-

ever, SN-Theorem 10.9 (ii) and SN-Corollary 5.25 (i) imply the following corollary: ⊳

Corollary 3.69 (PX -Equivalence of Factorizations)

Let the assumptions of Definition 3.54 hold and let g , g∗: Ω′
X →R be functions such that

g −1(B), g∗−1(B)⊂A
′

X . Furthermore, let g (X ), g∗(X ) ∈ E (Y |X ). Then

g =
PX

g∗. (3.52)

Hence, if g (X ), g∗(X ) ∈ E (Y |X ), then the factorizations g and g∗are identical with prob-

ability 1 with respect to the distribution PX of X . Note that PX is a probability measure on

(Ω′
X ,A ′

X ) (see Rem. 3.34).

Remark 3.70 (Properties of a Conditional Expectation) Many properties of conditional

expectations are presented, proved, and illustrated in SN-chapters 10 and 11. Some spe-

cial cases are treated in SN-chapters 12 and 13. The most important of these properties are

gathered in SN-Box 10.2 and SN-Box 11.1. ⊳

Remark 3.71 (Mean Independence) Under the assumptions of Definition 3.54 we define

mean independence of Y from X by

E (Y |X ) =
P

E (Y ), (3.53)

and use Y ⊢
P

X as a short cut. Similarly, if Z is another random variable on the same prob-

ability space as X and Y, then we define Z-conditional mean independence of Y from X ,

by

E (Y |X , Z ) =
P

E (Y |Z ), (3.54)

and use the symbol Y ⊢
P

X |Z as a short cut for this equation. If there is no ambiguity with

respect to the probability measure, then we also may omit the reference to the measure P

and simply write Y ⊢X and Y ⊢X |Z , respectively. Hence,

Y ⊢X :⇔ E (Y |X ) =
P

E (Y ) (3.55)

and

Y ⊢X |Z :⇔ E (Y |X , Z ) =
P

E (Y |Z ) . (3.56)

For more details on conditional mean independence see SN-section 10.6. ⊳
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3.3.5 Partial Conditional Expectation E (Y |X=x , Z )

According to Remark 3.59, the term E (Y |X , Z ) denotes the (X , Z )-conditional expectation

of Y with respect to P . The concept of a partial (X=x, Z )-conditional expectation of Y

builds on Corollary 3.63, according to which, for each version E (Y |X , Z ) ∈ E (Y |X , Z ),

there is a function g : Ω′
X ×Ω

′
Z →R such that

E (Y |X , Z ) = g (X , Z ), (3.57)

where g (X , Z ) denotes the composition of the multivariate random variable (X , Z ) and g .

According to Equation (3.50), for (x, z) ∈Ω
′
X ×Ω

′
Z ,

E (Y |X=x , Z=z) = g (x, z), (3.58)

is an (X=x, Z=z)-conditional expectation value of Y .

In Definition 3.73, we will refer to the function gx : Ω′
Z →R that, for x ∈Ω′

X , is defined by

gx (z) = g (x, z), ∀z ∈Ω
′
Z . (3.59)

Hence, a value gx (z) is identical to E (Y |X=x, Z=z), that is,

gx(z) = g (x, z) = E (Y |X=x , Z=z), ∀z ∈Ω
′
Z . (3.60)

Remark 3.72 (Uniqueness of E (Y |X=x, Z=z)) Note that in Equations (3.59) and (3.60)

we do not assume P (X=x, Z=z) > 0. However, there can be several versions E (Y |X , Z ) ∈

E (Y |X , Z ), and even for a given version E (Y |X , Z ) ∈ E (Y |X , Z ), there can be several fac-

torizations satisfying Equation (3.57) (see Rem. 3.68). This implies that E (Y |X=x, Z=z) is

not uniquely defined if P (X=x, Z=z) = 0. (For more details see SN-section 10.4.4). ⊳

Definition 3.73 (Partial Conditional Expectation)

Let X , Y , and Z be random variables on (Ω,A,P ) with value spaces (Ω′
X ,A ′

X ), (R,B),

and (Ω′
Z ,A ′

Z ), respectively. Furthermore, assume that Y is nonnegative or with finite ex-

pectation E (Y ), let E (Y |X , Z ) ∈ E (Y |X ,Z ) and let g be a factorization of E (Y |X , Z )

such that g (X , Z ) = E (Y |X , Z ). Finally, for x ∈Ω′
X , let the function gx be defined by

Equation (3.59). Then we call the function E (Y |X=x , Z ): Ω→R defined by

E (Y |X=x, Z ) := gx(Z ) (3.61)

a version of the partial (X=x, Z )-conditional expectation of Y (with respect to P).

Remark 3.74 (A Partial Conditional Expectation is a Random Variable) For all x ∈Ω′
X , the

function E (Y |X=x , Z )= gx(Z ) denotes the composition of Z and gx . Hence, for all x ∈Ω′
X ,

E (Y |X=x, Z ) is a Z -measurable random variable on (Ω,A,P ) (see Rem. 3.32 and SN-

Lemma 2.52). ⊳

Remark 3.75 (Partial Conditional Probability) If A ∈A, then we also use the notation

P (A | X=x, Z ) := E (1A | X=x, Z ) and call it a partial (X=x, Z )-conditional probability of (the

event) A (with respect to P ). Furthermore, if Y is binary with values 0 and 1, then we use

the notation P (Y =1|X=x, Z ) := E (Y |X=x , Z ) and call it a partial (X=x, Z )-conditional

probability of (the event) {Y =1} (with respect to P ). ⊳
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Remark 3.76 (The Set E (Y |X=x, Z )) Note that E (Y |X=x, Z ) is not uniquely defined for

two reasons. The first is that E (Y |X , Z ) is not uniquely defined (see Rem. 3.55). The second

reason is that even for a given version E (Y |X , Z ), the factorization g of E (Y |X , Z ) = g (X , Z )

is not uniquely defined (see Rem. 3.68 and Cor. 3.69). Therefore, we use

E (Y |X=x, Z ) :=
{

gx(Z ): gx satisfies (3.60), where g (X , Z )∈ E (Y |X ,Z )
}

(3.62)

to denote the set of all versions of the partial (X=x, Z )-conditional expectation of Y . ⊳

Remark 3.77 (Discrete X ) Under the assumptions of Definition 3.73, suppose that X is a

random variable on (Ω,A,P ) with value space (Ω′
X ,A ′

X ) and the image X (Ω) of Ω under X

is finite or countable with {x } ∈A
′

X for all x ∈X (Ω). Then

E (Y |X , Z ) =
∑

x ∈X (Ω)

E (Y |X=x , Z ) ·1X=x (3.63)

holds for the specific version E (Y |X , Z ) ∈ E (Y |X ,Z ) that is used in Definition 3.73 (for a

proof see SN-Exercise 14-6). Furthermore, for all versions V ∈ E (Y |X ,Z ),

V =
P

∑

x ∈X (Ω)

E (Y |X=x, Z ) ·1X=x . (3.64)

⊳

Remark 3.78 (A Partial Conditional Expectation is not a Conditional Expectation) Note

again, a partial conditional expectation is defined even if P (X=x) = 0. However, this def-

inition is not unique (see Rem. 3.76). Also note that, in general, a partial conditional

expectation is not a conditional expectation (with all its well-known properties) unless

P (X=x) > 0. In the latter case a partial conditional expectation is in fact a version of a

conditional expectation (see Th. 3.91). This is detailed in section 3.3.6. ⊳

3.3.6 Conditional Expectation E X=x (Y |Z ) With Respect to P X=x

Presuming P (X=x) > 0, now we introduce the conditional expectation of Y given Z with

respect to the (X=x)-conditional probability measure P X=x . Note that P X=x is just a special

case of the measure P B introduced in Definition 3.17 for B = {X=x } = {ω ∈Ω: X (ω)= x }.

Therefore, the expectation E X=x(Y ) of a numerical random variable Y with respect to the

measure P X=x has already been introduced in Equation (3.22).

Definition 3.79 (Z-Conditional Expectation With Respect to P X=x )

Let X , Y , and Z be random variables on (Ω,A,P ) with value spaces (Ω′
X ,A ′

X ), (R,B),

and (Ω′
Z ,A ′

Z ) respectively. Assume that Y is nonnegative or with finite expectation

E X=x(Y ) and x ∈Ω′
X is a value of X such that {x } ∈ A

′
X and P (X=x) > 0. Then a ran-

dom variable Vx : Ω→ R on (Ω,A,P ) is called a(version of the) Z-conditional expecta-

tion of Y with respect to P X=x , if the following two conditions hold:

(a) σ(Vx) ⊂ σ(Z ).

(b) E X=x(1C ·Vx ) = E X=x(1C ·Y ), ∀ C ∈σ(Z ).

If Vx satisfies (a) and (b), then we also use the notation E X=x(Y |Z ) :=Vx .
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Remark 3.80 (E X=x(Y |Z ) is a Conditional Expectation) Comparing Definitions 3.54 and

3.79 to each other shows that we only replaced the measure P , which is used to define an

expectation and a conditional expectation with respect to P by the measure P X=x , which

is used to define an expectation and a conditional expectation with respect to the measure

P X=x . Hence, E X=x(Y |Z ) has all properties of a Z -conditional expectation of Y, provided

that we replace the measure P by P X=x . For example, the property E
(

E (Y |X )
)

= E (Y ) has

to be translated to

E X=x
(

E X=x(Y |Z )
)

= E X=x(Y )

[see SN-Box 10.2 (iv)]. Similarly, the property E
(

E (Y |X )
∣

∣ f (X )
)

=
P

E
(

Y
∣

∣ f (X )
)

has to be

translated to

E X=x
(

E X=x(Y |Z )
∣

∣ f (Z )
)

=
P X=x

E X=x
(

Y
∣

∣ f (Z )
)

[see SN-Box 10.2 (v)]. ⊳

Remark 3.81 (The Set E
X=x(Y |Z )) As is true for any conditional expectation, there can

be more than one single version of the Z-conditional expectation of Y with respect to the

conditional probability measure P X=x . Therefore, we use E
X=x(Y |Z ) to denote the set of

all versions of the Z -conditional expectation of Y with respect to P X=x . ⊳

Remark 3.82 (P X=x -Uniqueness of E X=x(Y |Z )) However,

∀Vx ,Vx
∗
∈ E

X=x(Y |Z ): P X=x
({

ω ∈Ω: Vx (ω) =Vx
∗(ω)

})

= 1 (3.65)

(cf. Rem. 3.56). This is what we mean saying that E X=x(Y |Z ) is P X=x-unique. ⊳

Remark 3.83 (E X=x(Y |Z ) is not Necessarily P-Unique) Note that

∀Vx ,Vx
∗
∈ E

X=x(Y |Z ): P
({

ω ∈Ω: Vx (ω) =Vx
∗(ω)

})

= 1 (3.66)

does not necessarily hold. In other words, although E X=x(Y |Z ) is always P X=x -unique, it is

not necessarily P-unique. ⊳

In the following theorem, which is an adaptation of SN-Corollary 14.48, we present con-

ditions that are equivalent to P-uniqueness of E X=x(Y |Z ). In this theorem, we use the no-

tation

P (X=x |Z ) >
P

0 :⇔ P
({

ω ∈Ω: P (X=x |Z )(ω) > 0
})

= 1

and

P ≪
σ(Z )

P X=x :⇔ ∀A ∈σ(Z ) :
(

P X=x (A)= 0 ⇒ P (A) = 0
)

.

Hence, P ≪
σ(Z )

P X=x means that the measure P is absolutely continuous on the σ-algebra

σ(Z ) with respect to the measure P X=x (cf. Rem. 3.22).
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Theorem 3.84 (P-Uniqueness of E X=x(Y |Z ))

Let the assumptions of Definition 3.79 hold. Then the following propositions are equiv-

alent to each other.

(a) E X=x(Y |Z ) is P-unique.

(b) P (X=x |Z ) >
P

0.

(c) P ≪
σ(Z )

P X=x .

(d) PZ ≪ PZ |X=x .

Furthermore, if there is a version Vx ∈ E
X=x(Y |Z ) such that E (Vx) is finite, then each of

(a) to (d) is also equivalent to

(e) ∀Vx ,Vx
∗ ∈ E

X=x(Y |Z ) : E (Vx) = E (Vx
∗).

Example 3.85 (No Treatment for Joe) The last two columns of Table 3.2 display versions

of the conditional expectations E X =0(Y |U ) and E X =1(Y |U ), respectively. In this exam-

ple, E X =0(Y |U ) is P X =0-unique and P-unique. It is even uniquely defined. In contrast,

E X =1(Y |U ) is not uniquely defined and it also not P-unique. However, it is P X =1-unique,

because P (X =1 |U )(ω3) = P (X =1 |U )(ω4) = 0. Hence, in this example, condition (b)

of Theorem 3.84 does not hold. Exchanging in the last column of this table the num-

ber 99 by any other real number, say .8, yields another version of the U -conditional ex-

pectation of Y with respect to P X =1. If the two versions are denoted V1 and V ∗
1 , then

P X =1({ω ∈ Ω: V1(ω) = V ∗
1 (ω) }) = 1, that is, V1 and V ∗

1 are identical almost surely with re-

spect to the measure P X =1 (see Exercise 3-6). ⊳

Remark 3.86 (Factorization of E X=x(Y |Z )) If the assumptions of Definition 3.79 hold and

E X=x(Y |Z ) ∈ E
X=x(Y |Z ), then there is a function gx : Ω′

Z →R such that g−1
x (B) ⊂A

′
Z and

E X=x(Y |Z ) = gx (Z ) (3.67)

(see Cor. 3.63). The function gx is a factorization of E X=x(Y |Z ) (see Def. 3.64). Note that a

factorization is a random variable on (Ω′
Z ,A ′

Z ,PZ ), whereas E X=x(Y |Z ) and the composi-

tion gx(Z ) are random variables on (Ω,A,P ). ⊳

A factorization of E X=x(Y |Z ) can also be used for the definition of a (Z=z)-conditional

expectation value of Y with respect to the conditional probability measure P X=x . In this

definition we assume P (X=x) > 0, but not P (Z=z) > 0.

Definition 3.87 ((X=x)-Conditional Expectation Value)

Let gx : Ω′
Z → R be a function satisfying g−1

x (B) ⊂ A
′

Z and Equation (3.67). Then, for

all z ∈ Ω
′
Z , we define a (Z=z)-conditional expectation value of Y with respect to the

probability measure P X=x by

E X=x(Y |Z=z) := gx (z). (3.68)

Remark 3.88 (Values of E X=x(Y |Z )) The values of E X=x(Y |Z ) are the conditional expec-

tation values E X=x(Y |Z=z). In more formal terms,
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∀ω ∈Ω: E X=x(Y |Z )(ω) = E X=x(Y |Z=z), if ω ∈ {Z=z}. (3.69)

Furthermore, if P (X=x, Z=z) > 0, then

E X=x(Y |Z=z) = E (Y |X=x, Z=z) (3.70)

(see SN-Rem. 14.37). ⊳

Example 3.89 (No Treatment for Joe) Now we compute the values of the conditional ex-

pectation E X =0(Y |U ) in the example presented in Table 3.2. According to Remark 3.88,

the values of the conditional expectation E X =0(Y |U ) are the two conditional expectation

values E (Y |X =0,U=Joe ) and E (Y |X =0,U=Ann ). Because E (Y |X =0,U=u) = P (Y =1 |

X =0,U=u), they can be computed from the probabilities of the elementary events pre-

sented in Table 3.2 as follows:

P (Y =1 |X =0,U=Joe ) =
P (Y =1, X =0,U=Joe )

P (X =0,U=Joe )
=

.35

.15+ .35
= .7

and

P (Y =1 |X =0,U=Ann ) =
P (Y =1, X =0,U=Ann )

P (X =0,U=Ann )
=

.06

.06+ .24
= .2.

⊳

Important properties related to P-uniqueness of a conditional expectation E X=x(Y |Z )

with respect to P X=x are found in SN-sections 14.6.3 and 14.6.4. One of these properties is

related to absolutely continuity of P with respect to the measure P X=x (see the remark to

Lemma 3.21).

Remark 3.90 (Additional Properties) Aside from the properties of a conditional expecta-

tion (see SN-chapters 10 and 11), E X=x(Y |Z ) has a number of properties due to the fact

that E X=x(Y |Z ) is a random variable on the probability space (Ω,A,P ) and also a random

variable on (Ω,A,P X=x ). This follows from the fact that (Ω,A,P ) and (Ω,A,P X=x ) share the

same measurable space (Ω,A ) (see SN-Def. 5.1). Some of these properties are addressed

in the sequel. ⊳

According to the following theorem, the partial conditional expectation E (Y |X=x, Z )

is also a version of the Z -conditional expectation of Y with respect to P X=x , provided that

P (X=x) > 0 (for a proof see SN-Theorem 14.33).

Theorem 3.91 (Relationship Between E (Y |X=x, Z ) and E X=x(Y |Z ))

Let the assumptions of Definition 3.73 hold and suppose that x ∈Ω′
X such that {x } ∈A

′
X

and P (X=x) > 0. Then

E (Y |X=x , Z ) ∈ E
X=x(Y |Z ) . (3.71)

This implies

E (Y |X=x , Z ) =
P X=x

E X=x(Y |Z ), ∀E X=x(Y |Z )∈ E
X=x(Y |Z ) . (3.72)
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Box 3.1 Glossary of new concepts

Ω Set of possible outcomes.

A Set of possible events. A set of subsets of Ω satisfying the requirements of a

σ-algebra on Ω.

P Probability measure on A . A function on A with values in the closed interval

[0,1] satisfying the Kolmogorov axioms of probability.

(Ω,A,P) Probability space. It consists of the three components listed above. In empiri-

cal applications it already contains all information about the random experi-

ment considered.

P(A |B) Conditional probability of the event A given the event B . If A,B ∈A and

P(B) > 0, then P(A |B) := P(A∩B)/P(B).

P B B-conditional probability measure on A . If B ∈A and P(B) > 0, then P B(A) :=

P(A |B) for all A ∈A .

Y Random variable with value space (Ω′
Y ,A ′

Y ). It is a mapping on Ω with val-

ues in the set Ω
′
Y such that Y −1(A′) ∈ A, for all A ′∈A

′
Y , where Y −1(A′) :=

{ω ∈Ω: Y (ω)∈ A′} denotes the inverse image of A′ under Y.

PY Distribution of a random variable Y . It is a probability measure on (Ω′
Y ,A ′

Y )

defined by PY (A′) = P[Y −1(A′)], for all A ′∈A
′

Y .

E(Y |X ) A (version of the) X-conditional expectation of Y with respect to the probabil-

ity measure P . It is a random variable on (Ω,A,P) whose values are the condi-

tional expectation values E(Y |X=x ).

E X=x(Y |Z ) A (version of the) Z-conditional expectation of Y with respect to the conditional

probability measure P X=x . It is defined by P X=x = P {X =x} if X is a random

variable on (Ω,A,P) and P({X=x }) > 0, where {X =x } := {ω ∈Ω: X (ω) = x }.

Remark 3.92 (Relationship Between E X=x(Y |Z ) and E (Y |X , Z )) Let the assumptions of

Definition 3.79 hold and assume that the image X (Ω) of Ω under X is finite or countable

with {x } ∈A
′

X and P (X=x) > 0 for all x ∈X (Ω). Then

V =
P

∑

x ∈X (Ω)

E X=x(Y |Z ) ·1X=x , ∀V ∈ E (Y |X ,Z ) . (3.73)

⊳

3.4 Summary and Conclusions

In this chapter we reviewed the most important concepts of probability theory. The em-

phasis has been on the structure or architecture of these concepts. Box 3.1 provides a glos-

sary. We started with the three components of a probability space (Ω,A,P ), the set Ω of

possible outcomes, the σ-algebra A, a set of subsets of Ω with certain properties, and the
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probability measure P , a function on A with values in the closed interval [0,1], also satis-

fying certain properties, the Kolmogorov axioms of probability.

We continued with the concept of a random variable Y, a mapping on Ω with value

space (Ω′
Y ,A ′

Y ), where Ω
′
Y is a set and A

′
Y a σ-algebra on Ω

′
Y . Such a pair of a set and a

σ-algebra on this set is called a measurable space. The crucial property of a random vari-

able is that all inverse images Y −1(A ′), A ′∈A
′

Y , are elements of A . This guarantees that all

these inverse images have probabilities assigned by P , which is used to define the distri-

bution PY of the random variable Y .

Then we turned to the concept of an X-conditional expectation E (Y |X ) of a numerical

random variable Y, that is, a random variable with value space (R,B). This concept con-

tains the information on how the conditional expectation values E (Y |X=x) depend on the

values x of X . Because X can be multidimensional, such a conditional expectation E (Y |X )

and its values E (Y |X=x) are what we try to estimate in many statistical procedures, for

example, in regression analysis, analysis of variance, structural equation modeling, multi-

level analysis, etc.

The examples presented in this chapter and in chapter 1 show that under some con-

ditions (such as an experiment with randomized assignment of an observational unit to

a treatment), conditional expectations can be used to describe causal dependencies [see

E (Y |X ) in Table 3.1], whereas in other conditions (such as systematic self-selection) they

can totally lead us astray if such a causal interpretation of a conditional expectation is in-

tended [see E (Y |X ) in Table 1.2].

3.5 Proofs

Proof of Lemma 3.60

SN-Box 10.3 (ii) implies Y >
P
α ⇒ E(Y |X ) ≥

P
α. Hence, if Y >

P
α, then V ≥

P
α for all V ∈ E (Y |X ). Now

consider the event C ∈ σ(X ) defined by C := {ω ∈Ω: V (ω) = α}. We prove P(C ) = 0 by contradiction.

Hence, assume P(C ) > 0. Then

α ·P(C ) =

∫

1C α dP [SN-Th. 3.36 (i), SN-(3.9)]

=

∫

1C V dP [V (ω) =α if ω ∈C ]

=

∫

1C Y dP [SN-(6.1), Def. 3.54 (b)]

> α ·P(C ). [SN-Th. 3.52 (ii)]

This contradiction proves P(C ) = 0 and Proposition (3.48). Note that SN-Theorem 3.52 can be ap-

plied because
(

C ,A |C ,P |C

)

is a measure space, where A |C denotes the trace σ-algebra of A in C

(see SN-Example 1.10), and P |C denotes the restriction of P on C (see SN-Example 1.61).

3.6 Exercises

⊲ Exercise 3-1 Let Ω be nonempty. Show that {Ω,Ø} is a σ-algebra on Ω.

⊲ Exercise 3-2 Let Ω be nonempty and A ⊂Ω. Show that {A, Ac,Ω,Ø} is a σ-algebra on Ω.
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⊲ Exercise 3-3 Consider the random variable X in Example 3.28. Instead of (R,B), choose
(

{0,1,2},

P ({0,1,2})
)

as the value space of X . Write down all inverse images X −1(B), B ∈P ({0,1,2}).

⊲ Exercise 3-4 Why is the conditional expectation value E(Y |X =1,U=Joe ) not uniquely defined in

the example presented in Table 3.2?

⊲ Exercise 3-5 Consider the example presented in Table 3.1. Show that the random variable E(Y |X ) =

P(Y =1 |X ) specified in this table satisfies conditions (a) and (b) of Definition 3.54.

⊲ Exercise 3-6 Specify the conditional probability measure P X =1 in the example presented in Table

3.2.

⊲ Exercise 3-7 Consider example 3.85 and show that P X =1({ω ∈Ω: V1(ω) = V ∗
1 (ω)}) = 1, using the

conditional probability measure specified in Exercise 3-6.

⊲ Exercise 3-8 What does it mean when we assume that the conditional expectation E X=x(Y |Z ) is

P-unique?

⊲ Exercise 3-9 Which are the values of E X =0(Y |U ) and of the conditional expectation E(Y |X ,U )

for ω4 = (Joe ,yes ,+) in the example presented in Table 3.1?

⊲ Exercise 3-10 Which are the values of a Z -conditional expectation E X=x(Y |Z ) of Y with respect

to the conditional probability measure P X=x ?

⊲ Exercise 3-11 Compute the values of the conditional expectation E(Y |X ) in the example pre-

sented in Table 3.2.

⊲ Exercise 3-12 Compute the values of the conditional expectation E(Y |X ,U ) in the example pre-

sented in Table 3.2.

Solutions

⊲ Solution 3-1 Obviously, conditions (a) and (b) of Definition 3.3 are satisfied, because Ω
c = Ø

and Øc =Ω, and Ω,Ø ∈ {Ω,Ø}. Condition (c) is satisfied as well. If Ω is at least one of the elements

A1, A2, . . . ∈ {Ω,Ø}, then
⋃∞

i=1
Ai =Ω, which is an element of {Ω,Ø}. If Ω is not one of the elements

A1, A2, . . . ∈ {Ω,Ø}, that is, if A1, A2, . . . = Ø,Ø,. . . , then
⋃∞

i=1
Ai = Ø, which is an element of {Ω,Ø}, too.

⊲ Solution 3-2 Obviously, condition (a) of Definition 3.3 is satisfied, because Ω ∈ {A, Ac,Ω,Ø}.

Condition (b) of Definition 3.3 is satisfied as well, because the complement of each element of

{A, Ac,Ω,Ø} is also an element of this set. Finally, condition (c) is satisfied as well. If Ω is at least one

of the elements A1, A2, . . . ∈ {A, Ac,Ω,Ø} or if A and Ac are among the A1, A2, . . ., then
⋃∞

i=1
Ai =Ω,

which is an element of {A, Ac,Ω,Ø}. If neither Ω nor A or Ac are one of the elements A1, A2, . . . ∈

{A, Ac,Ω,Ø}, that is, if A1, A2, . . . = Ø,Ø,. . . , then
⋃∞

i=1
Ai = Ø, which is an element of {A, Ac,Ω,Ø},

too. If A is among the elements A1, A2, . . . ∈ {A, Ac,Ω,Ø} but neither Ac nor Ω, then
⋃∞

i=1
Ai = A,

which is an element of {A, Ac,Ω,Ø}. Finally, if Ac is among the elements A1, A2, . . . ∈ {A, Ac,Ω,Ø} but

neither A nor Ω, then
⋃∞

i=1
Ai = Ac , which is an element of {A, Ac,Ω,Ø}.

⊲ Solution 3-3 These inverse image are identical to those listed in Equation (3.12).

⊲ Solution 3-4 In this example, P(X =1,U=Joe ) = 0. This implies that the conditional probabilities

P(Y =y |X =1,U=Joe ) that are used in the definition of E(Y |X =1,U=Joe ) [see Eqs. (3.27) and (3.29)]

are not defined.
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⊲ Solution 3-5 The σ-algebra generated by E(Y |X ) consists of the following four inverse images:

∀B ∈B : E(Y |X )−1(B) =























ΩU × {no }×ΩY = {ω1,ω2,ω5,ω6}, if .6 ∉B and .45 ∈B

ΩU × {yes }×ΩY = {ω3,ω4,ω7,ω8}, if .6 ∈B and .45 ∉B

Ω= {ω1, . . . ,ω8}, if .6 ∈B and .45 ∉B

Ø, if .6 ∉B and .45 ∉B

(see Table 3.1). These four inverse images are identical to the elements of σ(X ):

∀B ∈B : X −1(B) =























C1 =ΩU × {no }×ΩY = {ω1,ω2,ω5,ω6}, if 1 ∉B and 0 ∈B

C2 =ΩU × {yes }×ΩY = {ω3,ω4,ω7,ω8}, if 1 ∈B and 0 ∉B

C3 =Ω= {ω1, . . . ,ω8}, if 1 ∈B and 0 ∉B

C4 = Ø, if 1 ∉B and 0 ∉B

(see again Table 3.1). Hence, σ
(

E(Y |X )
)

=σ(X ) implying that condition (a) of Definition 3.54 holds.

Now we show that condition (b) of Definition 3.54 holds as well. Using Equation (3.24) for the

random variable 1C 1 ·E(Y |X ) and the probabilities listed in Table 3.1 yields

E
(

1C 1 ·E(Y |X )
)

= .45 · (.09+ .21+ .24+ .06) + .6 ·0 + 0 · (.04+ .16+ .12+ .08) = .27.

Using the same formula and the same table for 1C 1 ·Y yields

E (1C 1 ·Y ) = 0 · (.09+ .24+ .04+ .12+ .16+ .08) + 1 · (.21+ .06) = .27.

Hence E
(

1C 1 ·E(Y |X )
)

= E(1C 1 ·Y ) holds for C1 ∈σ(X ). The analog computations for C2, C3, and C4

show that E
(

1C ·E(Y |X )
)

= E(1C ·Y ) also holds for the other three C ∈ σ(X ). Hence, condition (b)

of Definition 3.54 is satisfied as well. This proves that the random variable E(Y |X ) specified in Table

3.1 is in fact a version of the X -conditional expectation of Y .

⊲ Solution 3-6 The measure P X =1 is defined if the probabilities P X =1({ωi }) are specified for all

eight elementary events {ω1}, . . . , {ω8}. The probabilities of all other events can be computed from

the probabilities of the elementary events [see SN-Box 4.1 (x)]. Hence, we just have to specify the

following probabilities:

For i = 1,. . . ,6: P X =1({ωi }) =
P({ωi }∩ {X =1})

P(X =1)
=

0

.12+ .08
= 0.

For i = 7: P X =1({ωi }) =
P({ωi }∩ {X =1})

P(X =1)
=

.12

.12+ .08
= .6.

For i = 8: P X =1({ωi }) =
P({ωi }∩ {X =1})

P(X =1)
=

.08

.12+ .08
= .4.

⊲ Solution 3-7 The values of V1 and V ∗
1 only differ for the outcomesω1, . . . ,ω4. According to Exercise

3-6, P X =1({ω1, . . . ,ω4}) = 0. Hence, P X =1({ω ∈Ω: V1(ω) =V ∗
1 (ω)}) = 1.

⊲ Solution 3-8 By definition, there may be different versions E X=x(Y |Z ) of the Z -conditional ex-

pectation of Y with respect to the probability measure P X=x . In general, all pairs of such versions

are identical with probability P X=x = 1 [see Eq. (3.65)]. If we additionally assume that E X=x(Y |Z ) is

P-unique, then we assume that all pairs of versions Vx ,Vx
∗ ∈ E

X=x(Y |Z ) are identical with probabil-

ity P = 1 [see Eq. (3.66)].

⊲ Solution 3-9 E X =0(Y |U )(ω4) = E(Y |X = 0,U=Joe ) = .7. In contrast, the value of E(Y |X ,U ) is

E(Y |X ,U )(ω4)= E(Y |X =1,U=Joe ) = .8 (see the fourth row in Table 3.1).
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⊲ Solution 3-10 The values of E X=x (Y |Z ) are identical with the conditional expectation values E(Y |

X=x , Z=z). In more formal terms, E X=x (Y |Z )(ω) = E(Y |X=x , Z=z), if ω ∈ (X , Z )−1({(x, z)}).

⊲ Solution 3-11 The values of the conditional expectation E(Y |X ) are the two conditional expecta-

tion values E(Y |X = 0) and E(Y |X =1). Because E(Y |X=x ) = P(Y =1 |X=x ), they can be computed

from Table 3.2 as follows:

P(Y =1 |X = 0) =
P(Y =1, X = 0)

P(X = 0)
=

.35+ .06

.15+ .35+ .24+ .06
= .5125,

and

P(Y =1 |X =1) =
P(Y =1, X =1)

P(X =1)
=

0+ .08

0+0+ .12+ .08
= .4.

⊲ Solution 3-12 The values of the conditional expectation E(Y |X ,U ) in Table 3.2 are the four con-

ditional expectation values E(Y |X=x ,U=u). Because E(Y |X=x ,U=u) = P(Y =1 |X=x ,U=u), they

can be computed as follows:

P(Y =1 |X = 0,U=Joe ) =
P(Y =1, X = 0,U=Joe )

P(X = 0,U=Joe )
=

.35

.15+ .35
= .7,

P(Y =1 |X = 0,U=Ann ) =
P(Y =1, X = 0,U=Ann )

P(X = 0,U=Ann )
=

.06

.24+ .06
= .2,

P(Y =1 |X =1,U=Ann ) =
P(Y =1, X =1,U=Ann )

P(X =1,U=Ann )
=

.08

.12+ .08
= .4.

The conditional expectation value E(Y |X =1,U=Joe ) = P(Y =1 |X =1,U=Joe ) is undefined, be-

cause P(X =1,U=Joe ) = 0. Choosing any number (such as 99) as a value of E(Y |X ,U ) for ω3 =

(Joe ,yes ,−) and ω4 = (Joe ,yes ,+) yields a version of E(Y |X ,U ). Different versions of E(Y |X ,U ) are

identical almost surely with respect to the measure P [see Eq. (3.44)].
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Chapter 4

Potential Confounder and True Outcome Variable

In chapter 1 it has been shown that the conditional expectation values E (Y |X=x) of an

outcome variable Y and their differences E (Y |X=x) − E (Y |X=x ′), the prima facie effects,

can be misleading in evaluating the causal total effect of a (treatment) variable X on an

(outcome) variable Y. In chapter 2, we described random experiments of various research

designs in which a causal total effect is of interest. In chapter 3, we reviewed the most im-

portant concepts of probability theory, which are treated more extensively in Steyer and

Nagel (2017). The examples in chapters 1 and 3 show that the traditional probabilistic con-

cepts alone cannot be used offhandedly to define the causal effects in which we are inter-

ested when we evaluate a treatment, an intervention, or an exposition.

In the present chapter, we introduce the concept of a potential confounder, which is

crucial for the theory of probabilistic causality. In fact, conditional expectations such as

E (Y |X ) and E (Y |X , Z ) that describe a causal dependence can be distinguished from con-

ditional expectations that have no causal interpretation by their relationship to the poten-

tial confounders. A global potential confounder is a special potential confounder that is

used in the definition of a true outcome variable. True outcome variables will be used in

chapter 5 to define various kinds of causal total effects and in chapter 6 to define unbiased-

ness of the conditional expectations E (Y |X ) and E (Y |X , Z ), where Z denotes a covariate

and potential confounder.

4.1 Potential Confounder and Global Potential Confounder

In chapter 2 we already discussed the role of potential confounders in single-unit tri-

als. There, we already mentioned that we consider all random variables as potential con-

founders of a focussed cause X that are prior or at least simultaneous to X such that they

can induce biased prima facie total effects of X .

We start with the formal framework in which we can define the concept of a poten-

tial confounder and a global potential confounder. This necessitates that we consider a

random experiment that involves a time set T with elements 1, 2, and 3, allowing to distin-

guish between past, present, and future events, respectively, from the perspective of the

treatment (intervention or exposition). Note that this does not preclude that the underly-

ing process is more fine-grained in terms of the time points considered. For the present

purpose, however, it suffices to distinguish between three time ‘points’ or ‘phases’ of the

process considered. Presenting this framework we use the concept of a product σ-algebra,

which is specified, for example, in SN-Definition 1.31.
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Definition 4.1 (Causality Space)

Let (Ω,A,P ) be a probability space and let (Ωt ,At ), t ∈T = {1,2,3}, be measurable

spaces such that

Ω = Ω1×Ω2 ×Ω3 and A = A1⊗A2 ⊗A3, (4.1)

where A1⊗A2 ⊗A3 is the product σ-algebra. For each t ∈T , assume that At is such

that {ωt } ∈At for all ωt ∈Ωt . Furthermore, for each t ∈T , let ht : Ω → Ωt denote the

projection defined by

ht (ω) = ht (ω1,ω2,ω3) = ωt , ∀ω ∈ Ω, (4.2)

and assume that each ht , t ∈T , is A-measurable. Let X : Ω→Ω
′
X and Y : Ω→Ω

′
Y be

random variables on (Ω,A,P ) with value spaces (Ω′
X ,A ′

X ) and (Ω′
Y ,A ′

Y ), respectively,

such that {x } ∈A
′

X for all x ∈Ω′
X . Finally, define F1 = σ(h1), F2 = σ(h1,h2), and F3 =

σ(h1,h2,h3), and assume that σ(Y ) 6= {Ω,Ø} 6= σ(X ), σ(X ) ⊂ σ(h2), and σ(Y ) ⊂ σ(h3).

Then
(

(Ω,A,P ), (Ft , t ∈T ), X ,Y
)

is called a (total effects) causality space.

Remark 4.2 (Intuitive Background of a Causality Space) In a causality space we refer to

a probability space (Ω,A,P ) with a set of possible outcomes Ω that can be written as a

Cartesian product of three sets Ω1, Ω2, and Ω3. Of course, each of these sets can itself be

a Cartesian product of other sets. Requiring A = A1⊗A2 ⊗A3 and {ωt } ∈At for all ωt ∈Ωt

and each t ∈T , we secure that A is fine-grained enough to contain all relevant events in

the random experiment, which, in empirical applications, is represented by (Ω,A,P ). The

projections h1, h2, and h3 and the requirements for the σ-algebras σ(X ) and σ(Y ) are con-

structed such that the σ-algebras generated by these projections can, from the perspective

of the treatment variable X , be interpreted as representing the sets of past, present, and

future events, respectively, in the causal process considered. ⊳

Remark 4.3 (Filtration) Using the projections h1, h2, and h3 we specified a filtration

(Ft , t ∈T ) by F1 = σ(h1), F2 = σ(h1,h2), and F3 = σ(h1,h2,h3). Such a filtration satisfies

Fs ⊂ Ft for all s, t ∈ T with s ≤ t . With respect to such a filtration we can also define time

order between events, sets of events (including σ-algebras), and random variables (see,

e. g., SN-Rem. 4.18), so that phrases such as X is prior to Y have a well-defined meaning.

In the framework of a causality space this phrase means σ(X )⊂F2 and F2 6⊃σ(Y ) ⊂F3. ⊳

Now we define a potential confounder of X and a global potential confounder of X as

follows:

Definition 4.4 (Potential Confounder and Global Potential Confounder of X )

Let
(

(Ω,A,P ), (Ft , t ∈T ), X ,Y
)

be causality space.

(i) A random variable W : Ω→Ω
′
W with value space (Ω′

W ,A ′
W ) on (Ω,A,P ) is

called a potential confounder of X if there is a mapping g : Ω1 →Ω
′
W such that

W = g ◦h1 and g −1(A ′
W ) ⊂A1.
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(ii) A potential confounder W of X is called global if σ(W ) = σ(h1). In this case,

we often use the notation CX instead of W and denote the value space of CX by

(Ω′
CX

,A ′
CX

).

(iii) We call F1 =σ(h1) the σ-algebra of potential confounders of X .

If there is ambiguity that we are considering total effects, and not direct or indirect ef-

fects, then we can add the term ‘with respect to total effects’ to the terms introduced in

points (i) and (ii) of Definition 4.4.

Remark 4.5 (A Potential Confounder is h1-Measurable) According to SN-Theorem 2.49,

a potential confounder is measurable with respect to the projection h1 introduced in Def-

inition 4.1. From a substantive point of view, this secures that a potential confounder of X

represents a random variable that is prior or simultaneous to X in the causal process con-

sidered, provided, of course, that, in an empirical application, Ω1 and A1 are constructed

such that the σ-algebra generated by h1 represents all events that are prior or simultane-

ous to X . ⊳

Remark 4.6 (An Example of a Global Potential Confounder) The projection h1 itself is a

global potential confounder of X . In this case, the identity mapping id : Ω1 →Ω1 takes the

role of the mapping g occuring in Definition 4.4 (i). ⊳

Remark 4.7 (Uniqueness) Once the sets Ωt , t = 1,2,3, are specified, then the projections

ht : (Ω,A ) → (Ωt ,At ) are uniquely defined by Equation (4.2). This implies that the σ-al-

gebras generated by each ht are uniquely defined as well. There can be several global po-

tential confounders of X (see U and 1U =Joe in Example 4.10). However, the σ-algebras they

generate are identical to σ(h1), the σ-algebra of potential confounders of X . ⊳

Remark 4.8 (Coarsening X ) In Definition 4.4, requiring σ(X ) ⊂ σ(h2) instead of σ(X ) =

σ(h2) allows us, for instance, to merge two or more (original) treatment conditions into a

single one and compare the merged treatment to another one. For example, if originally

there are two treatment conditions and a control condition, then we can define a treat-

ment variable X with values 0 and 1 that compares treatment (no matter which of the two)

(X =1) to control (X =0). ⊳

Remark 4.9 (Covariate of X ) If W is a potential confounder of X , then we also call it a

covariate of X , in particular if we condition on W and X in a conditional expectation

E (Y |X ,W ) or in a conditional distribution PY |X ,W . ⊳

Example 4.10 (Joe and Ann With Randomized Assignment) We illustrate the concepts in-

troduced in Definition 4.4 by the example presented in Table 3.1. This table refers to the

following random experiment: First, we sample a unit u from the set ΩU := {Joe,Ann }. Sec-

ond, each unit receives (yes) or does not receive a treatment (no), and third, it is observed

whether (+) or not (−) a success criterion is reached at some appropriate time after treat-

ment. Defining ΩX := {yes,no } and ΩY := {+,−}, the set of possible outcomes ω of this ran-

dom experiment is

Ω =Ω1 ×Ω2 ×Ω3 := ΩU ×ΩX ×ΩY

=
{

(Joe,no,−), (Joe,no,+) , . . . , (Ann,yes,+)
}

.
(4.3)
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In this example, the set Ω has eight elements, the triples ω1 = (Joe,no,−), ω2 = (Joe,no,+),

. . ., ω8 = (Ann, yes,+) (see the first column of Table 3.1 for a complete list of these ele-

ments). Furthermore, we define A :=P (Ω) to be the power set of Ω. Finally, because each

nonempty element A ∈A is a union of singletons {ωi }, ωi ∈ Ω, and because a measure

is additive, the probability measure P : A → [0,1] is uniquely defined by the second col-

umn of Table 3.1 [see SN-Box 4.1 (x)]. Hence, the probability space (Ω,A,P ) is completely

specified.

Aside from the projections (see below), we consider three random variables: the obser-

vational-unit variable or person variable U : Ω → ΩU with value space
(

ΩU,P (ΩU)
)

, the

treatment variable X : Ω→R with value space (R,B), and the outcome or response vari-

able Y : Ω→R, also with value space (R,B). Table 3.1 shows how each of these random

variables assigns one of its values to each of the eight elements ωi ∈ Ω.

In this example, the projection mapping h1 is defined by

h1(ωi ) = h1

(

(u,ωX ,ωY )
)

= u, ∀ωi ∈ Ω .

Applying this assignment rule to all eight elements ωi displayed in the first column of

Table 3.1 shows that h1 =U . Hence, according to Definition 4.4 (ii), U is a global potential

confounder of X .

The σ-algebra F1 has only four elements, the event that Joe is drawn,

{U =Joe } := U −1({Joe }) =
{

(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)
}

,

the event that Ann is drawn,

{U =Ann } := U −1({Ann }) =
{

(Ann, no, −), (Ann, no, +), (Ann, yes, −), (Ann, yes, +)
}

,

the sure event Ω, and the impossible event Ø. Note that U is a projection that maps each

ω ∈ Ω on the first factor set ΩU of Ω. [It is identical to the projection mapping h1 intro-

duced in Def. 4.4, that is, h1 =U and σ(h1) =σ(U )]. Furthermore, the projection mappings

h2 : Ω→ΩX and h3 : Ω→ΩY are defined by

h2(ωi ) = h2

(

(u,ωX ,ωY )
)

= ωX , ∀ωi ∈ Ω,

and

h3(ωi ) = h3

(

(u,ωX ,ωY )
)

= ωY , ∀ωi ∈ Ω,

respectively.

Note that X and h2 are not identical because they take on different values. Whereas

the values of h2 are yes or no, the values of X are 1 or 0, respectively. Nevertheless, the

σ-algebras generated by X and generated by h2 are identical (see Exercise 4-1). That is,

σ(X ) =σ(h2), and this implies σ(X ) ⊂σ(h2) (see Def. 4.1).

According to Definition 4.4 (i), each random variable W : Ω→Ω
′
W on (Ω,A,P ) for which

there is a mapping g : Ω1 → Ω
′
W such that W = g ◦h1 and g −1(A ′

W ) ⊂ A1 is a potential

confounder. The indicator 1U =Joe defined by

1U =Joe (ωi ) =

{

1, if ωi ∈ {U =Joe }

0, otherwise
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is an example in case. In this specific example, in which there are only two observational

units, 1U =Joe is also a global potential confounder of X (see Exercise 4-2).

The structure of this concrete random experiment is essentially the same for every sim-

ple experiment of the type described in section 2.1. Only the number of values of U , X ,

and Y might change if we consider more than two observational units, more than two

treatment conditions, or more than two values of the outcome variable. ⊳

Example 4.11 (Nonorthogonal Two-Factorial Experiment) In the example presented in

Table 1.5, the person variable U is a global potential confounder, because U is only a more

convenient notation for the projection h1 :Ω→ΩU (see Example 3.2).

The random variable Z occurring in Table 1.5 is a potential confounder, but not a global

one. This random variable Z is also called a (qualitative) covariate if we consider the con-

ditional expectation values E (Y |X=x , Z=z) (see Remark 4.9 and Table 1.7). The definition

of Z in Equation (3.13) shows that there is a mapping g : ΩU → Ω
′
Z = {low,med,hi } such

that Z = g ◦U . This mapping is defined by

g (Tim ) = g (Tom ) = low

g ( Joe ) = g ( Jim ) = g ( Ann ) = g ( Eva ) = med (4.4)

g (Sue ) = g (Mia ) = hi.

Obviously, Z (ω)= g
(

U (ω)
)

[see again Eq. (3.13)].

The inverse images g −1(B), B ∈P (Ω′
Z ), are

g −1({low }) = {Tim ,Tom }

g −1({med }) = { Joe , Jim , Ann , Eva }

g −1({hi }) = {Sue ,Mia }

g −1({low, med }) = {Tim ,Tom , Joe , Jim , Ann , Eva } (4.5)

g −1({low, hi }) = {Tim ,Tom ,Sue ,Mia }

g −1({med, hi }) = { Joe , Jim , Ann , Eva ,Sue ,Mia }

g −1(Ω′
Z ) = ΩU

g −1(Ø) = Ø.

These eight inverse images are the elements of g −1
(

P (Ω′
Z )

)

and this σ-algebra is a subset

of P (ΩU). Hence, Z satisfies all requirements of a potential confounder [see Def. 4.4 (i)].

⊳

Example 4.12 (Experiments With Fallible Covariates) Which is the structure of the single-

unit trial of experiments and quasi-experiments if we do observe at least one fallible covari-

ate (see section 2.2)? This kind of random experiments consists of

(a) drawing a unit from ΩU,

(b) observing an element ωZ of ΩZ (based on which the fallible covariate Z : Ω→Ω
′
Z

assigns a value z ∈Ω′
Z to ωi ∈ Ω),

(c) assigning the unit or observing its selection to one of the experimental conditions

(represented by the value x of the treatment variable X ), and

(d) recording the numerical value y of the outcome variable Y .
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Hence,

Ω = Ω1 ×Ω2 ×Ω3 = (ΩU ×ΩZ)×ΩX ×ΩY, where Ω1 = ΩU ×ΩZ. (4.6)

Compared to Equation (4.3), now the set Ω involves the additional set ΩZ, which together

with the set ΩU of observational units, defines Ω1 = ΩU ×ΩZ. Note that Z may also be

multivariate, consisting of several univariate covariates. It consists of fallible measures of

attributes of the units, for example, self-rated motivation for therapy, personality, or ability

test score variables. Given a particular unit u, there is at least one value of such a fallible

variable such that 0 < P (Z=z) < 1. Because Z is fallible, there is no mapping f : ΩU →Ω
′
Z

such that Z = f (U ). This includes the fallible measures of a latent potential confounder,

say ξ, which itself, by definition, is a mapping of U (see, e. g., Steyer et al., 2015). Hence,

the latent variable ξ itself is not fallible, it is measurable with respect to U . ⊳

Example 4.13 (Joe With two Independent Treatments) Table 4.1 presents another ran-

dom experiment in which a given unit, say Joe, may simultaneously receive either:

(a) no treatment at all,

(b) not a first treatment (e. g., no group therapy) but a second one (e. g., individual ther-

apy),

(c) a first treatment (group therapy) but no second one (no individual therapy),

(d) both treatments (group therapy and individual therapy).

Furthermore, it is registered whether (+) or not (−) a success criterion is reached. The setΩ

of all possible outcomes of the random experiment consists of the eight possible outcomes

listed in the first column of the table.

In this example, we consider only one single person, which implies that the observa-

tional-unit variable is a constant and can be ignored. Therefore, it does not appear in Ta-

ble 4.1. Furthermore, we can focus X as the treatment variable and Z as a potential con-

founder, but also vice versa. This choice has implications on how we structure the set Ω of

possible outcomes.

Choosing X as a cause and Z as a potential confounder, ΩZ, ΩX, and ΩY take the roles

of Ω1, Ω2, and Ω3, respectively [see Eq. (4.1)]. That is,

Ω = Ω1 ×Ω2 ×Ω3 = ΩZ ×ΩX ×ΩY,

with ΩZ =ΩX = {yes ,no }, and ΩY = {+,−}.

We choose A = P (Ω) to be the power set of Ω. The probabilities of all 28 = 256 events

(i. e., of the elements of A ) are determined by the probabilities of the elementary events

displayed in the first column of the table. The table also shows how the random variables

X , Y , and Z are specified, that is, how their values are assigned to each ωi ∈ Ω.

In this example, the random variable Z : Ω→Ω
′
Z is identical to the projection h1, be-

cause Ω
′
Z =Ω1 =ΩZ = {yes ,no } and

A
′

Z := P (Ω′
Z ) =

{

{no }, { yes }, Ω′
Z ,Ø

}

contains the singletons {no } and { yes } as elements. Furthermore, the treatment variable

X : Ω→Ω
′
X is identical to the projection h2, because Ω

′
X =Ω2 =ΩX = {yes ,no } and

A
′

X := P (Ω′
X ) =

{

{no }, { yes }, Ω′
X ,Ø

}
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Table 4.1. Joe with two independent treatments

Outcomes ωi Random variables Conditional expectations
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ω1 = (no , no, −) .09 .15 0 no no 0 .7 .45 .4 .7 .8

ω2 = (no , no, +) .21 .35 0 no no 1 .7 .45 .4 .7 .8

ω3 = (no , yes , −) .04 0 .1 no yes 0 .8 .6 .4 .7 .8

ω4 = (no , yes , +) .16 0 .4 no yes 1 .8 .6 .4 .7 .8

ω5 = (yes , no, −) .24 .4 0 yes no 0 .2 .45 .4 .2 .4

ω6 = (yes , no, +) .06 .1 0 yes no 1 .2 .45 .4 .2 .4

ω7 = (yes , yes , −) .12 0 .3 yes yes 0 .4 6 .4 .2 .4

ω8 = (yes , yes , +) .08 0 .2 yes yes 1 .4 6 .4 .2 .4

contains the singletons {no } and { yes } as elements. The two possible values of this random

variable, yes and no represent receiving and not receiving individual therapy, respectively.

Note that we could also have chosen co-domains for the true treatment variables

that differ from {yes ,no }, such as {0,1} or R. Although these co-domains would lead to

other random variables that would not be identical any more to Z or X , respectively, the

σ-algebras generated by these new treatment variables would still be identical to σ(h1 ) and

σ(h2), respectively. ⊳

The σ-algebra F1 =σ(h1) has four elements, the event

{

(no ,no ,−), (no ,no ,+), (no , yes,−), (no , yes,+)
}

that no group therapy is obtained, the event

{

(yes ,no ,−), (yes ,no ,+), (yes , yes,−), (yes , yes,+)
}

that group therapy is obtained, the sure eventΩ and the impossible event Ø. Theσ-algebra

F1 is also the σ-algebra of potential confounders of X .

The σ-algebra F2 has 24 = 16 elements, the four events

{

(no ,no ,−), (no ,no ,+)
}

‘neither individual nor group therapy’,
{

(no , yes,−), (no , yes,+)
}

‘no group but individual therapy’,
{

( yes,no ,−), ( yes,no ,+)
}

‘group but no individual therapy’,
{

( yes, yes,−), ( yes, yes,+)
}

‘individual and group therapy’,

all (pairwise, triple-wise, quadruple-wise) unions of these four events, and the impossible

event Ø. The first set
{

(no ,no ,−), (no ,no ,+)
}

, for example, is the event that Joe neither

receives treatment 1 nor treatment 2, whereas the second set
{

(no , yes,−), (no , yes,+)
}

is
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the event that Joe does not receive treatment 1 (group therapy) but receives treatment 2

(individual therapy).

The σ-algebra F3 has 28 = 256 elements. It consists of the eight elementary events

{

(no , no, −)
}

,
{

(no , no, +)
}

, . . . ,
{

( yes, yes, +)
}

(see the first column of Table 4.1), all unions of these events, which includes Ω, and the

impossible event Ø.

4.2 True Outcome Variable

In this section, we introduce the concept of a (total effects) true outcome variable of Y

given the value x of X . This is a fundamental concept of the theory of causal effects. In its

definition, we consider a CX -conditional expectation of Y with respect to the conditional

probability measure P X=x (see Def. 3.79), where CX denotes a global potential confounder

of X (see Def. 4.4). This is tantamount to conditioning on the event {X=x} and on all po-

tential confounders of X . To emphasize, defining a total effects true outcome variable, we

do not condition on intermediate variables, and this is why we refer to total effects if the

context is ambiguous.

Remark 4.14 (Intuitive Background ) The intuitive background is as follows. Condition-

ing on a global potential confounder, we share John Stuart Mill’s idea already described in

the preface. However, we make a slight modification. Instead of comparing values of Y , we

compare certain conditional expectation values of Y between treatment conditions.

As we have seen in Example 4.10, the person variable U can take the role of a global

potential confounder of X . Now, suppose an observational unit u may receive treatment

(intervention, exposition) (X =1) or control (no treatment, an alternative treatment or ex-

position) (X =0). If there is a difference between the (X =1,U=u)-conditional expectation

value and the (X =0,U=u)-conditional expectation value, then this difference is due to

(i. e., caused by) the treatment variable X . In this example, conditioning also on a person

u means that ‘everything else is invariant’, for example, the severity of symptoms, the mo-

tivation for treatment, educational status, etc. Hence, this is a probabilistic version of the

ceteris paribus clause.1 Note that the treatment effect can be different for different values

of the global potential confounder. ⊳

Remark 4.15 (Two Concepts) The intuitive idea of a true outcome variable outlined in

Remark 4.14 can mathematically be specified by conditional expectations E X=x(Y |CX )

with respect to a conditional probability measure P X=x (see section 3.3.6). If P (X=x) > 0,

then this concept can be used to describe how a numerical random variable Y depends

on a random variable CX given the event {X=x}. The difference E X=x(Y |CX )−E X =x ′

(Y |CX )

then defines the true effect function (see Def. 5.2). Alternatively, we might use the par-

tial conditional expectations E (Y |X=x ,CX ) and E (Y |X=x ′,CX ) (see Def. 3.73) comparing

treatment x to treatment x ′. According to Theorem 3.91, if P (X=x) > 0, then E (Y |X=x,CX )

is also a version of the conditional expectation E X=x(Y |CX ) with respect to the conditional

probability measure P X=x . ⊳

1 This idea is already found in Splawa-Neyman (1923/1990). Later, it has been oversimplified by Rubin introduc-

ing the potential outcome variables (see, e. g., Rubin, 1974, 2005). The true outcome variables play a similar role

as the potential outcome variables in Rubin’s approach.
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Definition 4.16 (True Outcome Variable )

Let the assumptions 4.1 hold, where Y is real-valued with E (Y 2) <∞, let x ∈ Ω
′
X be a

value of X with P (X=x) > 0, and let CX be a global potential confounder of X . Then

τx := E X=x(Y |CX ) (4.7)

is called a true outcome variable of Y given the value x of X or given the event {X=x }.

Remark 4.17 (A Caveat on Notation) The shortcut τx is meaningful only if the references

to a specified outcome variable Y, a specified cause X , and a global potential confounder

CX of X are unambiguous. ⊳

Remark 4.18 (Value of a True Outcome Variable) Assume that x is a value of X and c a

value of CX such that P (X=x,CX =c) > 0. Then a value of τx is called the true (or expected)

outcome of Y given the value x of X or given the event {X=x }. According to Equations (3.69)

and (4.7),

∀ω ∈ Ω : τx(ω) = E X=x(Y |CX )(ω) = E X=x(Y |CX =c), if ω ∈ {CX =c}. (4.8)

Furthermore, if P (X=x,CX =c) > 0, then

E X=x(Y |CX =c) = E (Y |X=x,CX =c), (4.9)

[see Eq. (3.70)]. That is, a value of a true outcome variable τx is identical to a conditional

expectation value of Y given the value x of X and the value c of a global potential con-

founder CX . As already mentioned in Remark 3.68, such a conditional expectation value is

uniquely defined only if P (X=x,CX =c) > 0. ⊳

Remark 4.19 ( τx is CX -Measurable) Note that τx is a random variable on (Ω,A,P ) that is

measurable with respect to CX , that is, σ(τx) ⊂σ(CX ). This follows from the fact that there

is a mapping gx : Ω′
CX

→ R such that τx = gx ◦CX and g−1
x (B) ⊂ A

′
CX

[see SN-Th. 2.49 and

Def. 4.4 (ii)]. The existence of such a mapping gx follows from the fact that τx = E X=x(Y |CX )

is a conditional expectation (with respect to the measure P X=x ) and Corollary 3.63. Hence,

we may rewrite Equation (4.8) as follows:

∀ωi ∈ Ω : τx(ωi ) = E X=x(Y |CX )(ωi ) = gx ◦CX (ωi )

= gx

(

CX (ωi )
)

= gx(c) = E X=x(Y |CX =c), if ωi ∈ {CX =c}.
(4.10)

According to this equation, in order to assign a value of τx to an outcome ωi ∈ Ω of the ran-

dom experiment, first we may assign toωi a value c of the global potential confounder, and

then assign to c via gx the corresponding conditional expectation value E X=x(Y |CX =c)

(see Def. 3.87, Rem. 3.88, and Example 4.21). ⊳

Remark 4.20 (True Outcome Variable of Y Given Treatment x) In Definition 4.16 we do

not presume that X is a treatment variable in an experiment or quasi-experiment. If, how-

ever, X is a treatment variable, then we call τx a true outcome variable of Y given treatment

x. If there is ambiguity, we use the term total effects true outcome variable in order to dis-

tinguish it from a direct effects true outcome variable (which is not treated in this volume).

⊳
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Example 4.21 (Joe and Ann With Randomized Assignment) The most important param-

eters of this random experiment are presented in Table 3.1. In Example 4.10 we already

specified the set Ω of possible outcomes and the projections h1, h2, and h3 for this random

experiment. There, we also asserted that U is a global potential confounder of the treat-

ment variable X , playing the role of CX in the general theory. Therefore, τx = E X=x(Y |CX ) =

E X=x(Y |U ) for both treatments x=0 and x=1.

Now we specify the true outcome variables τx = E X=x(Y |CX ) = E X=x(Y |U ) for the two

treatment conditions x = 0,1. The true outcome variable τ0 = E X =0(Y |U ) of Y given con-

trol is specified by

τ0 = g0(U ), (4.11)

where U : Ω→ΩU with

U (ωi ) = U
(

(u,ωX ,ωY )
)

= u, for all ωi ∈ Ω, (4.12)

and g0 : ΩU →R with

g0(u) = E (Y |X =0,U=u), for all u ∈ΩU (4.13)

[see Eqs. (4.9) and (4.10)]. Hence, in order to assign a value of τ0 to an outcome ωi ∈ Ω

of the random experiment, first we have to assign to ωi a value u ( Joe or Ann ) of the

observational-unit variable U , and then assign to u via g0 the corresponding conditional

expectation value E (Y |X =0,U=u ) (see Def. 3.87 and Rem. 3.88).

If, for instance, ω3 = ( Joe ,yes ,−) (see the third row in Table 3.1), then U (ω3) = Joe , and

the value of τ0 is

τ0(ω3) = g0

(

U (ω3)
)

= g0( Joe ) = E (Y |X =0,U=Joe ) = P (Y =1 |X =0,U=Joe ) = .7.

This is true even though X (ω3) = 1 and the value of the conditional expectation E (Y |X ,U )

is

E (Y |X ,U )(ω3) = E (Y |X =1,U=Joe ) = P (Y =1 |X =1,U=Joe ) = .8.

Hence, the true outcome variable τ0 of treatment 0 takes on a well-defined value for ω3

even though the unit drawn receives treatment 1. This illustrates the distinction between

the random variables τ0 = E X =0(Y |U ) and E (Y |X ,U ). While τ0 is solely a function of U

[see Eq. (4.11)], the conditional expectation E (Y |X ,U ) is a function of X and U . That is,

there is a function g : Ω′
X×ΩU → R such that E (Y |X ,U ) = g (X ,U ) can be written as the

composition of (X ,U ) and g .

Because, in this example, the outcome variable Y is binary with values 0 and 1, the

conditional expectation value E (Y |X =0,U=u ) is also the conditional probability P (Y =1 |

X =0,U=u ) of success, and because, in this example, U has only two values, Joe and Ann ,

the true outcome variable τ0 also has only two different values, the two conditional prob-

abilities P (Y =1 |X =0,U=Joe ) = .7 and P (Y =1 |X =0,U=Ann ) = .2 (see Table 3.1).

Similarly, the true outcome variable τ1 = E X =1(Y |U ) of treatment condition 1 is speci-

fied by

τ1 = g1(U ), (4.14)

where g1 : ΩU →R is defined by

g1(u) = E (Y |X =1,U=u), for all u ∈ΩU . (4.15)
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Hence, if ωi ∈ {U =Joe }, then the value of τ1 is

τ1(ωi ) = g1

(

U (ωi )
)

= g1( Joe ) = E (Y |X =1,U=Joe ) = P (Y =1 |X =1,U=Joe ) = .8,

and if ωi ∈ {U =Ann }, then the value of τ1 is

τ1(ωi ) = g1

(

U (ωi )
)

= g1(Ann ) = E (Y |X =1,U=Ann ) = P (Y =1 |X =1,U=Ann ) = .4.

Table 3.1 shows which values τ0 and τ1 assign to each of the eight possible outcomes ωi of

the random experiment. ⊳

Remark 4.22 (True Outcome vs. Potential Outcomes) Rubin (1974, 2005) assumes that

given an observational unit u and a treatment condition x, the values of his potential out-

come variables Y0 and Y1 are fixed numbers. In the example presented in Table 3.1, this

would mean to replace the two true outcome variables τ0 and τ1 by the two potential out-

come variables Y0 and Y1 that can take on only the values 0 and 1. Substantively speaking,

this would mean that, given a concrete treatment and a concrete observational unit, the

outcome is fixed to 0 or 1. For example, if the outcome is being alive (Y =1) or not (Y =0) at

the age of 80 and the treatment is receiving (X =1) or no receiving (X =0) an anti-smoking

therapy before the age of 40, then this deterministic idea is not in line with our knowledge

of causes for being dead at the age of 80.

In contrast, the two true outcome variables τ0 and τ1 can take on any real number as

values. In the example of Table 3.1, they can take on any value between 0 and 1, inclusively.

In the smoking example, their values would be the person-specific probabilities of being

alive at the age of 80, given treatment or no treatment. Therefore, the true outcomes vari-

ables can be considered to be a generalization of the potential outcome variables. Most

important, in contrast to potential outcome variables, true outcomes variables are in line

with the idea that events that occur in between treatment and outcomes may also affect

the outcome variable Y . ⊳

Example 4.23 (No Treatment for Joe) In Table 3.2 we presented an example, in which U

is a global potential confounder and the true outcome variable τ1 = E X =1(Y |U ) is neither

uniquely defined nor P-unique. In Example 3.62 we showed that there are several ver-

sions of the (X ,U )-conditional expectation of Y that are P-equivalent. In Example 3.85 we

showed that τ1 = E X =1(Y |U ) is P X =1-unique but not P-unique. In contrast, in the same

example, τ0 = E X =0(Y |U ) is not only P X =0-unique but also P-unique and even uniquely

defined. ⊳

Example 4.24 (Nonorthogonal Two-Factorial Experiment) In Example 4.11 we already

showed that U is a global potential confounder of X and that Z is a potential confounder

of X . In the last three columns of Table 1.5 we presented the true outcome variables

τ0 = E X =0(Y |U ), τ1 = E X =1(Y |U ), and τ2 = E X =2(Y |U ). In this example, all three true out-

come variables are uniquely defined, because P (X =1 |U ) > 0 (see Th. 3.84). ⊳

4.3 Summary and Conclusions

In this chapter we set the stage for defining causal effects and causal probabilistic depen-

dencies. We specified the mathematical structure, a causality space, and formulated the
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assumptions under which we can define causal effects and meaningfully raise the ques-

tion if conditional expectation values such as E (Y |X=x) or E (Y |X=x, Z=z) can be used

to describe causal effects or if conditional distributions such as PY |X=x or PY |X=x , Z=z can

be used to define causal dependencies.

We started with the fundamental concepts of a potential confounder and a global poten-

tial confounder of a focused cause (variable) X . Both concepts are essential for the theory

of probabilistic causality because conditional expectations and distributions that have a

causal interpretation differ from those having no such interpretation by their relationship

to all potential confounders (see the chapters to come). The definition of these concepts

presumes that the probability space considered has a certain mathematical structure that

has been specified in Definition 4.1. From a substantive point of view, the most important

idea is that we consider a random experiment in which a focussed cause (variable), say

X , has a past, a present, and a future. Because we only deal with causal total effects of X ,

potential confounders pertain to the past of X , whereas the outcome variable Y pertains

to the future of X . These intuitive ideas have been formalized in Def. 4.4) utilizing the con-

cepts of measurability and measurable mappings that are well-known in mathematical

measure and probability theory. (For an introduction into these concepts see SN-ch. 2.)

In the definition of a true outcome variable, we condition on a value x of X that has

a positive probability and on a global potential confounder CX . In this way we control

for all potential confounders. Note that in this and the next chapter, we are still in the

process of defining the parameters to be estimated in empirical studies on causal effects.

Defining these parameters is necessary if we want to study the conditions under which

these parameters can in fact be estimated empirically.

Assuming P (X=x) > 0, a true outcome variable τx has been defined such that its val-

ues are the conditional expectation values E (Y |X=x,CX =c) of the outcome variable Y

holding constant X at the value x and CX at a value c. We do not condition on intermedi-

ate variables, and this is why we only consider total effects. Ignoring intermediate variables

implies that there can be a positive (X=x ,CX =c)-conditional variance of the outcome vari-

able Y , for example, due to mediator variables and events that may occur in between X

and Y . 2 A limitation of true outcome variables is that they are defined only for values x of

X that have a positive probability.

In chapter 5 we use true outcome variables to define various kinds of causal conditional

and average total effects. In chapter 6, true outcome variables are used to introduce the

concept of unbiasedness, a first causality condition, that is, a condition allowing to identify

causal total effects from empirically estimable parameters. In chapters 7 to ??, we study

various other causality conditions that imply unbiasedness.

4.4 Exercises

⊲ Exercise 4-1 Consider the example presented in Table 3.1 and show that theσ-algebras generated

by X and generated by h2 are identical.

⊲ Exercise 4-2 Show that 1U =Joe defined in Example 4.10 is a global potential confounder of X .

2 This is also the reason why Rubin’s potential outcome variables are inadequate. He assumes that the value of a

potential outcome variable is fixed if we condition on a treatment x and a person u. This is a contradiction to the

idea that intermediate variables might also affect the outcome variable Y . True outcome variables remedy this

deficiency.
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Box 4.1 Glossary of new concepts

(Total effects) causality space The formal framework under which we can define causal
(

(Ω,A,P), (Ft , t ∈T ), X ,Y
)

total effects comparing a value x of X to another value x ′ of

X with respect to the outcome variable Y .

Potential confounder Under the assumptions of Definition 4.1, this is a ran-

dom variable W on (Ω,A,P) with value space (Ω′
W ,A ′

W ) for

which there is a mapping g : Ω1 →Ω
′
W such that W = g ◦h1

and g −1(A ′
W ) ⊂A1.

Global potential confounder A potential confounder of X (often denoted by CX ) gener-

ating the same σ-algebra as h1.

True outcome variable τx A version of the CX -conditional expectation of Y with re-

spect to the conditional probability measure P X=x . That is,

τx = E X=x(Y |CX ). With a global potential confounder CX

we condition on all potential confounders of X .

⊲ Exercise 4-3 What are the assumptions based on which we can define a true outcome variable?

⊲ Exercise 4-4 What does it mean when we assume that a true outcome variable τx is uniquely

defined up to P-equivalence?

⊲ Exercise 4-5 Which are the values of the true outcome variable τ0 and of the conditional expec-

tation E(Y |X ,U ) for ω4 = (Joe ,yes ,+) in the example presented in Table 3.1?

⊲ Exercise 4-6 Which are the elements of the σ-algebra σ(h1) in Example 4.10?

⊲ Exercise 4-7 Compute the values of the true outcome variable τ0 = E X =0(Y |U ) in the example

presented in Table 3.2.

Solutions

⊲ Solution 4-1 There are four different inverse images of sets B ∈B under X :

∀B ∈B : X −1(B) =























{ω3,ω4,ω7,ω8}, if 0 ∉B and 1 ∈B

{ω1,ω2,ω5,ω6}, if 0 ∈B and 1 ∉B

Ω, if 0 ∈B and 1 ∈B

Ø, if 0 ∉B and 1 ∉B.

These four inverse images are the elements ofσ(X )= X −1(B). Furthermore, we choose theσ-algebra

A2 =
{

{no }, {yes },Ω2,Ø
}

, which satisfies the requirements made in the assumptions of Definition 4.1.

There are four different inverse images of sets A ∈A2 under h2, namely

h−1
2 ({yes }) = {ω3,ω4,ω7,ω8},

h−1
2 ({no }) = {ω1,ω2,ω5,ω6},

h−1
2 (Ω2) = Ω,



94 4 Potential Confounder and True Outcome Variable

h−1
2 (Ø) = Ø.

These four sets are the elements of the σ-algebra h−1
2 (A2) generated by h2. Hence, X −1(B) =

h−1
2 (A2).

⊲ Solution 4-2 According to Definition 4.4 (i), each random variable W : Ω→Ω
′
W on (Ω,A,P) for

which there is a mapping g : Ω1 →Ω
′
W such that W = g ◦h1 and g −1(A ′

W ) ⊂ A1 is a potential con-

founder. In this example ΩU takes the role of Ω1 and P (ΩU) the role of A1. If we choose {0,1} to be

the co-domain of the indicator 1U =Joe , then the mapping g : ΩU → {0,1} is defined by

g ( Ann ) = 0 and g ( Joe ) = 1.

Obviously, g is such that 1U =Joe = g ◦U and g −1
(

P ({0,1})
)

=P (ΩU) [see Eq. (3.15)].

⊲ Solution 4-3 First, we assume that the random experiment considered in an empirical applica-

tion is represented by the probability space (Ω,A,P). The set Ω of possible outcomes of the random

experiment is structured such that Ω =Ω1 ×Ω2 ×Ω3 . The set Ω1 is chosen such that the σ-algebra

generated by the projection h1 : Ω→Ω1 contains all events that cannot be caused by X . The set Ω2

is chosen such that X is measurable with respect to h2 : Ω → Ω2, and Ω3 is chosen such that Y is

measurable with respect to h3 : Ω→Ω3. Second, there are two random variables on the probability

space (Ω,A,P), say X and Y , where X represents the cause and Y the outcome variable.

⊲ Solution 4-4 By definition, there may be different versions of a true outcome variable. In general,

two such versions τx and τ∗x are identical almost surely with respect to the probability measure P X=x .

A more precise formulation is Equation (3.65) for Vx = τx and Vx
∗ = τ∗x . If we additionally assume that

τx is P-unique, then two versions τx and τ∗x are identical almost surely with respect to the probability

measure P . Again, see the more precise formulation in Equation (3.66).

⊲ Solution 4-5 The value τ0(ω4) of the true outcome variable τ0 is E(Y |X = 0,U=Joe ) = .7. In con-

trast, the value E(Y |X ,U )(ω4) of the conditional expectation E(Y |X ,U ) is E(Y |X =1,U=Joe ) = .8

(see the fourth row in Table 3.1).

⊲ Solution 4-6 The σ-algebra σ(h1) has four elements. Aside from Ω and Ø, these are the event

A = {Joe}×ΩX ×ΩY =
{

(Joe,no ,−), (Joe ,yes ,−), (Joe ,no ,+), (Joe ,yes ,+)
}

that Joe is drawn and the event

Ac
= {Ann }×ΩX ×ΩY =

{

(Ann,no ,−), (Ann ,yes ,−), (Ann ,no ,+), (Ann ,yes ,+)
}

that Ann is drawn.

⊲ Solution 4-7 The values of the true outcome variable τ0 = E X =0(Y |U ) are the two conditional ex-

pectation values E(Y |X = 0,U=Joe ) and E(Y |X = 0,U=Ann ). Because Y is binary, E(Y |X = 0,U=u)

= P(Y =1 |X = 0,U=u), and these conditional probabilities can be computed from the probabilities

of the elementary events presented in Table 3.2 as follows:

P(Y =1 |X = 0,U=Joe ) =
P(Y =1, X = 0,U=Joe )

P(X = 0,U=Joe )
=

.35

.15+ .35
= .7

and

P(Y =1 |X = 0,U=Ann ) =
P(Y =1, X = 0,U=Ann )

P(X = 0,U=Ann )
=

.06

.24+ .06
= .2.



Chapter 5

Causal Total Effects

In chapter 4, we defined a true outcome variable τx = E X=x(Y |CX ) as a version of the CX -

conditional expectation of Y with respect to the (X=x)-conditional probability measure

P X=x . With CX we condition on all potential confounders of X . Although, in empirical ap-

plications, the values of such a true outcome variable are rarely estimable under realistic

assumptions, the expectation of τx as well as the conditional expectation of τx given an-

other random variable V , such as a covariate of X , can be estimated under appropriate

and realistic assumptions.

We start this chapter defining a true total effect variable and a (CX =c)-conditional true

causal total effect. The expectation of the true total effect variable is then defined to be the

causal average total effect of Y comparing x to x ′ (another value of X ). Then we turn to

the definition of a causal conditional total effect of treatment x compared to treatment x ′

given the value v of a random variable V , as well as a causal conditional total effect func-

tion comparing treatment x to treatment x ′ conditioning on a random variable V . Each

of these kinds of conditional total effects or effect functions provides specific information

that might be of interest in empirical causal research and evaluation studies. In the first

place, these parameters and effect functions are of a purely theoretical nature. However,

in the chapters to come we study how these various kinds of causal effects can be identified

by empirically estimable parameters and how the causal effect functions can be identified

by empirically estimable functions.

Talking about an effect or an effect function, we compare in some way or other two val-

ues x and x ′of X to each other. This makes sense only if the quantities that we compare are

uniquely defined, at least up to some minimal degree of uniqueness. For example, com-

paring E (Y |X=x) to E (Y |X=x ′) makes sense only if both conditional expectation values

are uniquely defined, an assumption that does not necessarily hold (see, e. g., Def. 3.66 and

Rem. 3.68). In contrast, if we assume P (X=x) > 0 and P (X=x ′) > 0, then E (Y |X=x) and

E (Y |X=x ′) are uniquely defined [see Eq. (3.27)] and it is meaningful to compare these

two numbers to each other. This kind of uniqueness issue is the reason why we include

P (X=x),P (X=x ′) > 0 in the assumptions, which will often be referred to in this chapter.

Note, however, that this kind of assumption is not necessary for all causality conditions for

conditional expectations such as E (Y |X ) or E (Y |X , Z ) (see, e. g., chs. 8 and 9).

Assumptions 5.1

Let
(

(Ω,A,P ), (Ft , t ∈T ), X ,Y
)

be a causality space, let x, x ′∈Ω
′
X be two values of X

such that P (X=x),P (X=x ′) > 0, and let Y be real-valued such that E (Y 2) < ∞. Fur-

thermore, let CX denote a global potential confounder of X . Finally, let τx and τx ′ denote

true outcome variables of Y given the values x and x ′of X , respectively.
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5.1 True Total Effect Variable

Now we introduce the concepts of a true (CX =c)-conditional total effect and a true total

effect variable of Y comparing x to x ′, the latter being two different values of the focused

cause X . The basic idea of these concepts is to hold constant all other possible causes of Y

at one combination of their values and then compare the conditional expectation values

of Y between the two values x and x ′ of X . The intuitive version of this basic idea goes

back at least to John Stuart Mill (1843/1865). It is often referred to as the ceteris paribus

clause (all other things equal). Remember that a global potential confounder can be a

multivariate random variable, consisting of several univariate random variables (poten-

tial confounders). Also note that a global potential confounder of X does not comprise

intermediate variables, that is, variables that might be affected by X and might have an

effect on Y . This would be necessary only if we would define direct effects instead of total

effects.

A true (CX =c)-conditional total effect is a uniquely defined number, the difference

E (Y |X=x ,CX =c) − E (Y |X=x ′,CX =c).

This difference may also be called the true total effect on Y comparing x to x ′ given (the

event) {CX =c}. The two conditional expectation values in this difference are uniquely de-

fined if we assume P (X=x,CX =c) > 0 and P (X=x ′,CX =c) > 0 [see Eq. (3.27)]. For different

values c and c ′ of the global potential confounder CX , the true conditional total effects can

differ from each other. This necessitates the second concept, a true total effect variable of

Y comparing x to x ′, that is,

E X=x(Y |CX ) − E X =x ′

(Y |CX ) = τx − τx ′ .

In general, this random variable is not uniquely defined so that there can be many versions

of such a true total effect variable. However, assuming that τx = E X=x(Y |CX ) and τx ′ =

E X =x ′

(Y |CX ) are P-unique implies that their difference is P-unique as well [see SN-Box

14.1 (viii)].

Note that the concepts of a true total effect and a true total effect variable are of a the-

oretical nature and can be estimated only under rather restrictive assumptions. However,

other causal total effects such as the expectation of τx −τx ′ can be estimated under less

restrictive assumptions.

Definition 5.2 (True Total Effect and True Total Effect Variable )

Let the Assumptions 5.1 hold.

(i) If c is a value of CX such that P (X=x,CX =c), P (X=x ′,CX =c) > 0, then we call

CTECX ; xx ′(c) := E (Y |X=x,CX =c)−E (Y |X=x ′,CX =c) (5.1)

the true total effect on Y given the value c of CX comparing x to x ′.

(ii) Assume that τx and τx ′ are P-unique. Then we call CTECX ; xx ′ : Ω′
CX

→ R a ver-

sion of the true total effect function comparing x to x ′ (with respect to Y ), if

CTECX ;xx ′(CX ) =
P
τx −τx ′ (5.2)

holds for the composition CTECX ;xx ′(CX ) of CX and CTECX ;xx ′.
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(iii) We call the composition CTECX ; xx ′(CX ) a version of the true total effect variable

comparing x to x ′ (with respect to Y ).

Remark 5.3 (CTECX ;xx ′(CX ) Versus CTECX ; xx ′) While CTECX ;xx ′(CX ) is a random variable

on the probability space (Ω,A,P ), which assigns values to allω ∈ Ω, the function CTECX ; xx ′

is a random variable on (Ω′
CX

,A ′
CX

,PCX
), which assigns values to all c ∈Ω

′
CX

. From a sub-

stantive point of view the two mappings contain the same information. ⊳

Remark 5.4 (Uniqueness of a True Total Effect Variable) For simplicity, we denote a true

total effect variable CTECX ; xx ′(CX ) also by

δxx ′ = τx −τx ′ . (5.3)

It is a function on Ω and a random variable on (Ω,A,P ). It is not necessarily unique. How-

ever, P (X=x),P (X=x ′) > 0 and P-uniqueness of τx and τx ′ imply that the difference vari-

able δxx ′ is also P-unique [see SN-Box 14.1 (viii)]. That is, two versions of such a difference

variable are identical P-almost surely. Hence, if δxx ′ and δ∗xx ′ are two such versions, then

E (δxx ′ ) = E (δ∗xx ′ ) [see SN-Box 6.1 (ix) with A =Ω]. Other implications are that δxx ′ and δ∗xx ′

have identical distributions, variances, and covariances with other random variables (see

Rem. 3.57). ⊳

Remark 5.5 (Uniqueness of a True Total Effect Function) In contrast to δxx ′ , which is a

function on Ω, a true total effect function CTECX ; xx ′ is a function on Ω
′
CX

. It is also not

necessarily unique. However, if there are two versions of CTECX ; xx ′, then they are identical

PCX
-almost surely. This follows from δxx ′ =

P
δ∗xx ′ (see Rem. 5.4) and SN-Theorem 2.86. ⊳

Remark 5.6 (Values of a True Total Effect Variable) As mentioned above,δx x ′ is a random

variable on (Ω,A,P ). According to Equations (4.7), (3.69), and (3.70),

∀ω ∈Ω: δxx ′(ω) = E X=x(Y |CX )(ω)−E X =x ′

(Y |CX )(ω)

= E X=x(Y |CX =c)−E X =x ′

(Y |CX =c)

= E (Y |X=x ,CX =c)−E (Y |X=x ′,CX =c), if ω ∈ {CX =c }.

(5.4)

Hence, a value of a true total effect variable δxx ′ is the difference between the conditional

expectation values of Y given the values (x,c) and (x ′,c) of (X ,CX ). If c is a value of CX such

that P (X=x,CX =c),P (X=x ′,CX =c) > 0, then

∀ω ∈Ω: δxx ′ (ω) = CTECX ;xx ′(c), if ω ∈ {CX =c } (5.5)

[see Def. 5.2 (i) and Def. 3.87]. In this case, this value is identical for all versions of the

true total effect function CTECX ;xx ′ and for all versions of the true total effect variable

CTECX ; xx ′(CX ) = δxx ′ . ⊳

Remark 5.7 (Probabilistic Ceteris Paribus Clause) Considering a value CTECX ; xx ′(c) is tan-

tamount to comparing x to x ′ (with respect to the outcome variable Y ) keeping constant

the global potential confounder CX , and with it, keeping constant all potential confounders

of X . Keeping constant CX is the translation of the ceteris paribus clause for total effects

into probability theory. ⊳
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5.2 Causal Average Total Effect

Now we define a causal average total effect by the expectation

E (δxx ′ ) = E (τx −τx ′ ) = E (τx) − E (τx ′ ) (5.6)

of a true total effect variable [see Eq. (5.3) and SN-Box 6.1 (vi)].

Note that the causal average total effect is an expectation of a true total effect variable

δ10; it is not an unweighted average as the name might suggest.

As mentioned before, this expectation can be estimated under assumptions that are

less restrictive than those that allow estimating the total effect variable δxx ′ itself. This will

be detailed in the chapters on unconfoundedness and its sufficient conditions.

Definition 5.8 (Causal Average Total Effect)

Let the Assumptions 5.1 hold and let δxx ′ = τx −τx ′ . Furthermore, assume that τx and τx ′

are P-unique. Then

ATE xx ′ := E (δxx ′ ), (5.7)

is called the causal average total effect on Y comparing x to x ′ (with respect to P).

Taking the expectation of δxx ′ (with respect to P ) means that we consider the average

total effect with respect to the measure P , that is,

ATE xx ′ = E (δxx ′ ) = E
(

CTECX ;xx ′(CX )
)

. (5.8)

In principle, we can also consider the average total effect with respect to another measure

than P (see Rem. 5.24).

Remark 5.9 ( Expectation of CTECX ; xx ′ With Respect to the Distribution of CX ) According

to SN-Theorem 6.13, ATE xx ′ is identical to the expectation of a true total effect function

CTECX ; xx ′ with respect to the distribution of the global potential confounder CX , that is,

ATE xx ′ = E (δxx ′ ) = ECX
(CTECX ; xx ′). (5.9)

⊳

Remark 5.10 (P-Uniqueness of τx and τx ′) In Definition 5.8, we assume P (X=x) > 0 and

P (X=x ′) > 0 as well as P-uniqueness of τx and τx ′ . According to Theorem 3.84, P-unique-

ness of τx and τx ′ is equivalent to absolute continuity of PCX
with respect to PCX |X=x and

PCX |X =x ′, and to

P (X=x |CX ) >
P

0 and P (X=x ′
|CX ) >

P
0.

According to the same theorem, P-uniqueness of τx is also equivalent to

∀τx ,τ∗x ∈ E
X=x(Y |CX ) : E (τx) = E (τ∗x ), (5.10)

because we presume that Y is real-valued with a finite second moment (see Ass. 5.1 and

Exercise 5-6.) Hence, under the assumptions of Definition 5.8, the expectation E (τx) is a
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uniquely defined number, and the same applies to τx ′ and its expectation E (τx ′).1 This

implies that, under the assumptions of Definition 5.8, E (δx x ′ ) is a uniquely defined number

as well. If the true outcome variables τx and τx ′ are not P-unique, then the causal average

total effect is not defined. In this case we also say that it does not exist. ⊳

Remark 5.11 (Substantive Meaning) If X represents a treatment variable, then ATE xx ′ is

also called the ‘average causal effect’ or the ‘(causal) average treatment effect’ comparing

treatment x to treatment x ′, which is unambiguous as long as no direct and/or indirect

treatment effects are discussed in the same context. An average total effect is among the

parameters that one might want to estimate from sample data. ⊳

Remark 5.12 (Hypothesis of a t-Test in a Randomized Experiment) The causal average to-

tal effect is what is tested by a t-test of the hypothesis µ0 =µ1 [in our notation E (Y |X =0) =

E (Y |X =1)] in an experiment with randomized assignment of an observational unit to a

treatment condition (see Cor. 8.17). The expectations E (τx) and E (τx ′) occurring in Equa-

tion (5.6) are estimated, for example, by the sample group means in such a randomized

experiment involving two treatment conditions x and x ′. If certain assumptions hold, then

these expectations are also estimated by the adjusted means in analysis of covariance and

its generalizations, as well as in procedures based on propensity scores. (For more details

see the chapters to come.) ⊳

Example 5.13 (Joe and Ann With Randomized Assignment) In Table 3.1 we presented an

example in which the person sampled is assigned to one of the two treatment conditions

by randomization. This implies that P (X=x |U=u) = P (X=x) for all persons u ∈ΩU, that

is, all persons have the same probability to be assigned to treatment x. In example 4.21,

we specified the true outcome variables τ0 = g0(U ) and τ1 = g1(U ) and their values g0(u)

and g1(u) for this example.

Now we illustrate the causal average total effect comparing treatment to control, which

can be computed as follows:

ATE 10 = E
(

E X =1(Y |U )−E X =0(Y |U )
)

= E (τ1 −τ0) = E (τ1)−E (τ0)

=
∑

u
g1(u) ·P (U=u)−

∑

u
g0(u) ·P (U=u)

= P (Y =1 |X =1,U=Joe ) ·P (U=Joe ) + P (Y =1 |X =1,U=Ann ) ·P (U=Ann )

−
(

P (Y =1 |X =0,U=Joe ) ·P (U=Joe ) + P (Y =1 |X =0,U=Ann ) · P (U=Ann )
)

= .80 · .50 + .40 · .50 − (.70 · .50 + .20 · .50) = .15,

using the transformation theorem (see SN-Th. 6.13 and SN-Rem. 6.15).

Figure 5.1 visualizes the causal average total effect, which, in this example, is identical

to the difference

E (Y |X =1)−E (Y |X =0) = P (Y =1 |X =1)−P (Y =0 |X =0) = .6− .45 = .15

(see ch. 8 for the reason why E (Y |X =1)−E (Y |X =0) = ATE 10). Figure 5.1 also illustrates

various conditional probabilities of success. The points marked by the dashed line rep-

resent the probabilities P (Y =1 |U =Joe , X =1) and P (Y =1 |U =Joe , X =0) of success for

1 The expectation E(τx ) corresponds to the term E [Y |do(x)] in Pearl’s and to E(Yx ) in Rubin’s terminologies (see,

e. g., Pearl, 2009, p. 108 and Rubin, 2005, p. 323).



100 5 Causal Total Effects

0.0

0.2

0.4

0.6

0.8

1.0

P(Y =1 |X=x )

P(Y =1 |X=x ,U=Joe )

P(Y =1 |X=x ,U =Ann )

0 1 X

C
o

n
d

it
io

n
a

lp
ro

b
a

b
il

it
y

o
f

su
cc

e
ss

Figure 5.1. Conditional probabilities of success given treatment and person

Joe given that he is treated and given that he is not treated, respectively. Similarly, the

two points marked by the solid line indicate the probabilities P (Y =1 |U =Ann , X =1) and

P (Y =1 |U =Ann , X =0) of success for Ann given that she is treated and given that she is

not treated, respectively. The points marked by the dotted line represent the conditional

probabilities P (Y =1 |X =1) and P (Y =1 |X =0) of success given treatment and given con-

trol, respectively. The size of the area of the dotted circles is proportional to the conditional

probabilities P (U=u |X=x) that are used in the computation of the conditional expecta-

tion values

E (Y |X=x) =
∑

u
E (Y |X=x ,U=u) ·P (U=u |X=x) (5.11)

[see SN-Box 9.2 (ii)]. ⊳

5.3 Conditional Total Effect and Conditional Total Effect Function

So far we considered the random variables X , Y , and CX , a global potential confounder of

X . Now we bring into play an additional random variable V on (Ω,A,P ) and introduce the

concepts of the causal conditional total effect given the value v of a V and of a causal V-

conditional total effect function. Often V is a covariate of X , such as a pretest that measures

the ‘same’ attribute as the outcome variable Y , only prior to treatment. In other examples,

V could be X or any other random variable on (Ω,A,P ). First, we explain the assumptions

based on which we can introduce these concepts, present their definitions, and then turn

to re-aggregating conditional effects.
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5.3.1 Notation, Assumptions and Definitions

Assume that V is a random variable on (Ω,A,P ) with value space (Ω′
V ,A ′

V ), let v ∈Ω
′
V

such that P (V =v) > 0, and let PV =v denote the (V =v)-conditional probability measure on

(Ω,A ) [see Def. 3.17 for B = {V =v } = {ω ∈Ω: V (ω)=v }]. In Definition 5.17, we will define

a (V =v)-conditional total effect to be the conditional expectation value E (τx −τx ′ |V =v).

Remark 5.14 (PV =v -Uniqueness of a True Total Effect Variable) If P (V =v) > 0, then τx =

E X=x(Y |CX ) is called PV =v-unique, if

PV =v
({

ω ∈Ω: τx(ω) 6= τ∗x (ω)
})

= 0, ∀τx ,τ∗x ∈ E
X=x(Y |CX ) . (5.12)

⊳

Remark 5.15 (An Implication of PV =v -Uniqueness of τx and τx ′) The conditional expec-

tation value E (τx −τx ′ |V =v) is a uniquely defined number if P (V =v) > 0 and we assume

PV =v -uniqueness of τx and τx ′ . In other words, if τx , τx ′ are PV =v-unique and δxx ′ , δ∗xx ′ are

different versions of the true total effect variable CTECX ;xx ′(CX ) [see Def. 5.2 (iii)], then

E V =v (δxx ′ ) = E V =v (δ∗xx ′) = E (δxx ′ |V =v ) = E (δ∗xx ′ |V =v) (5.13)

[see SN-Box 14.1 (viii)]. ⊳

Remark 5.16 (P-Uniqueness Implies PV =v -Uniqueness) If P (V =v) > 0, then P-unique-

ness of E X=x(Y |CX ) implies that E X=x(Y |CX ) is also PV =v-unique [see SN-Box 14.1 (v)]. In

contrast, PV =v -uniqueness of E X=x(Y |CX ) does not imply that it is also P-unique. Hence,

PV =v -uniqueness of τx = E X=x(Y |CX ) is a weaker assumption than P-uniqueness of τx . ⊳

Definition 5.17 (Causal Conditional Total Effect Function)

Let the Assumptions 5.1 hold and let V be a random variable on (Ω,A,P ) with value

space (Ω′
V ,A ′

V ).

(i) Assume that P (V =v ) > 0 and that τx and τx ′ are PV =v-unique. Then we call

CTE V ; xx ′(v) := E (τx −τx ′ |V =v) (5.14)

the causal (V =v)-conditional total effect on Y comparing x to x ′.

(ii) Assume that τx and τx ′ are P-unique. If the function CTE V ; xx ′ : Ω′
V →R is such that

CTE V ; xx ′
−1(B) ⊂A

′
V and

CTE V ; xx ′(V ) =
P

E (τx −τx ′ |V ), (5.15)

then CTE V ; xx ′ is called a version of the causal V-conditional total effect function

comparing x to x ′ (with respect to Y ).

(iii) The composition CTE V ; xx ′(V ) is called a version of the causal V-conditional total

effect variable comparing x to x ′ (with respect to Y ).

Remark 5.18 (A Characterization of CTEV ;xx ′(V )) SN-Theorem 2.49 and SN-Remark 10.14

imply that CTE V ; xx ′(V ) is V -measurable and is a version of the V-conditional expectation

of τx −τx ′ , that is,
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CTE V ; xx ′(V ) ∈ E (τx −τx ′ |V ) (5.16)

[see SN-Prop. (10.12)]. ⊳

Remark 5.19 (CTE V ; xx ′(V ) Versus CTE V ; xx ′) While CTE V ; xx ′(V ) is a random variable on

the probability space (Ω,A,P ), which assigns values to all ω ∈ Ω, the function CTE V ; xx ′ is

a random variable on (Ω′
V ,A ′

V ,PV ), which assigns values to all v ∈Ω
′
V . It is the factorization

of the conditional expectation CTEV ;xx ′(V ). ⊳

Remark 5.20 (Conditioning on CX Versus Conditioning on V ) So far, we considered two

kinds of random variables on which we condition. The first and most fine-grained one is

CX , a global potential confounder of X . Such a variable is essential for the theory and in

particular for translating the ceteris paribus clause into the language of probability theory.

It has been used in chapter 4 to define a true outcome variable τx = E X=x(Y |CX ). Estimat-

ing the true outcome variables τx and τx ′ or their difference δxx ′ requires strong assump-

tions. Considering a causal V-conditional total effect function, we reaggregate the true to-

tal effect variable. This yields a less fine-grained or coarsened total effect variable, but it

is still a causal conditional total effect variable. In contrast to a true total effect variable, a

V-conditional total effect function often can be identified under realistic assumptions by

empirically estimable conditional expectations (see, e. g., chs. 6 to ??). ⊳

Remark 5.21 (E (τx |V ) Versus E X=x(Y |V )) Note the distinction between the V-conditional

expectations E (τx |V ) and E (τx ′ |V ) on one side and the two V-conditional expectations

E X=x(Y |V ) and E X =x ′

(Y |V ) on the other side. The difference between the first two condi-

tional expectations is a causal V-conditional total effect variable, that is,

CTEV ; xx ′(V ) =
P

E (τx −τx ′ |V ) =
P

E (τx |V ) − E (τx ′ |V ). (5.17)

In contrast, in general, the conditional expectations E X=x(Y |V ) and E X =x ′

(Y |V ), and their

difference have no causal meaning. The difference E X=x(Y |V ) − E X =x ′

(Y |V ) is just a

prima facie effect function, which can be seriously misleading if erroneously interpreted

as a causal total effect variable. ⊳

Remark 5.22 (Coarsening the True Total Effect Function τx −τx ′) With E (τx |V ) we coarsen

(or reaggregate) the true outcome variable τx = E X=x(Y |CX ). Conditioning on the global

potential confounder CX we control for all potential confounders of X . Therefore the con-

ditional expectations E X=x(Y |CX ) and E X =x ′

(Y |CX ) inform us how Y depends on the

values x and x ′ controlling for all potential confounders of X . Hence, considering the

V-conditional expectation of the difference variable τx −τx ′ does not introduce bias. It

just coarsens the most fine-grained total effects to causal total effects that are less fine-

grained. In contrast, considering the conditional expectations E X=x(Y |V ) and E X =x ′

(Y |V )

and their difference, we only control for V , possibly neglecting important potential con-

founders. [In chapter 6 we define E X=x(Y |V ) to be unbiased or biased depending on

whether or not E X=x(Y |V ) =
P

E (τx |V ).] ⊳

Remark 5.23 (Values of a Causal Conditional Total Effect Variable) Note that CTE V ; xx ′(V ),

the composition of the conditional total effect function CTEV ;xx ′ and V , is a random vari-

able on (Ω,A,P ), and according to Equation (3.51),
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∀ ω ∈Ω: CTEV ;xx ′(V )(ω) = E (τx −τx ′ |V )(ω)

= E (τx |V )(ω)−E (τx ′ |V )(ω)

= E (τx |V =v)−E (τx ′ |V =v), if v ∈ {V =v}

= E (τx −τx ′ |V =v)

= CTE V ; xx ′(v).

(5.18)

Hence, a value of the causal conditional total effect variable CTE V ; xx ′(V ) is the difference

between a (V =v)-conditional expectation value of τx and of τx ′ . If v is a value of V such

that the assumptions of Definition 5.17 (i) are satisfied, then CTEV ;xx ′(v) is uniquely de-

fined and it is identical to the (V =v)-conditional expectation value of τx −τx ′ given the

event {V =v} = {ω ∈Ω: V (ω) = v}. ⊳

Remark 5.24 (Average Total Effect With Respect to PV =v ) In Definition 5.17 (i) it is as-

sumed that P (V =v) > 0 and that τx and τx ′ are PV =v-unique. Therefore, the causal (V =v)-

conditional total effect CTEV ;xx ′(v) on Y comparing x to x ′ is identical to the causal aver-

age total effect on Y comparing x to x ′ with respect to the measure PV =v . ⊳

Remark 5.25 (Causal Conditional Versus Causal Average Total Effects) A causal condition-

al total effect variable is more informative than the causal average total effect. If V is a

mapping of the observational-unit variable U such as V := sex or V := educational status,

then the causal (V =v)-conditional total effect is the causal average total effect given that

we sample a person from the subpopulation represented by the value v of V . If the variable

V is a pretest that measures the ‘same’ (e. g., live satisfaction) as the outcome variable Y

(the post-test), but prior to the onset of the treatment, then comparing the conditional to-

tal effects CTEV ;xx ′(v) and CTE V ; xx ′(v ′) shows if these conditional total effects are different

for different values v and v ′of this pretest. If they are, then the numbers CTEV ;xx ′(v) and

CTEV ;xx ′(v ′) may inform about the differential indication of the treatment. That is they

answer questions such as “Which treatment is good for which kind of persons?” ⊳

5.3.2 Causal (X =x∗)-Conditional Total Effect

A special case of a (V =v)-conditional effect is the (X=x∗)-conditional effect comparing x

to x ′. In this case, the X does not only play the role of the focused cause, but also of the

variable on whose values we condition. Note that x∗ can be identical to x, x ′, or to a third

value of X . For V =X and v =x∗, Definition 5.17 (i) yields

CTE X ; xx ′(x∗) = E (τx −τx ′ |X=x∗), (5.19)

the causal (X=x∗)-conditional total effect on Y comparing x to x ′.

Remark 5.26 (Substantive Meaning) Suppose X represents a treatment variable in an ex-

periment or in a quasi-experiment. If there are two treatment conditions, treatment (X =1)

and control (X =0), then we may consider CTE X ;10(1), the (X =1)-conditional total effect

comparing of treatment (X =1) to control (X =0), and CTE X ;10(0), the (X =0)-conditional

total effect comparing treatment (X =1) to control (X =0). These effects are also known as

the ‘average effect on the treated’ and the ‘average effect on the untreated’, respectively. ⊳

Remark 5.27 (Pre-Facto Perspective) At first sight, the concept of an (X=x∗)-conditional

total effect comparing x to x ′ seems strange, in particular if x∗= x ′. If, for example, x ′
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represents ‘no treatment’, how can we talk about the causal average (or conditional) to-

tal treatment effect on the untreated ? Remember that we are not talking about data that

resulted from an experiment — an interpretation that is suggested by the term ‘treatment

effect on the untreated’. Instead we are considering a random experiment that is still to be

conducted, that is, we look at the random experiment from the pre-facto perspective. This

is what probabilistic theories are about: a random experiment that is not yet conducted.

Talking about the probability of an event does not make sense for an event that already

occurred, unless we do as if it did not yet occur, that is, unless we take the pre-facto per-

spective. Hence, we can talk about a causal individual total effect although the individual

is not yet treated and even if it will never be treated, just in the same way as we can talk

about the probability of flipping ‘heads’, even if the coin is never flipped. ⊳

Remark 5.28 (Causal (X=x∗)-Conditional Total Treatment Effects) The causal condition-

al total effects given a specific value x∗ of the treatment variable X are often more infor-

mative than the causal average total effects, especially, if the X -conditional expectations

of the true outcome variables τx and τx ′ actually depend on the values of X . If, however,

E (τx |X ) =
P

E (τx) and E (τx ′ |X ) =
P

E (τx ′), (5.20)

then

CTE X ;xx ′(X ) =
P

E (τx −τx ′ |X ) =
P

E (τx |X )−E (τx ′ |X ) =
P

E (τx)−E (τx ′) = ATE xx ′. (5.21)

In this case the causal (X=x∗)-conditional total treatment effects CTE X ;xx ′(x∗) are identi-

cal for all values x∗of X for which P (X=x∗) > 0. A sufficient condition of Proposition (5.20)

is stochastic independence of X and the global potential confounder CX (see Exercise 5-

10), a condition that is created in the randomized experiment. (For more details see ch. 8.)

⊳

Remark 5.29 (CTE X ;10(1) Versus CTE X ;10(0)) Suppose we are interested in the effects of

a treatment (represented by X =1) compared to a control (represented by X =0) with re-

spect to the outcome variable Y, say well-being. Because there is no random assignment of

persons to treatments, the persons that tend to take the treatment may differ in their well-

being before treatment and in other pre-treatment variables from those who tend to be in

the control condition. In this case, there might be large differences in the causal (X =1)-

conditional total effect CTE X ;10(1) compared to the causal (X =0)-conditional total effect

CTE X ;10(0) . In this scenario the causal average total effect ATE 10 would not be of much in-

terest. The causal (X =1)-conditional effect CTE X ;10(1) helps us evaluating how good the

treatment is on average for those that tend to go to this treatment. In contrast, CTE X ;10(0)

informs us about the average effect of the treatment on those who tend to be in control —

under the present side conditions determining the participation in the treatment. Hence,

if the causal conditional total effect CTE X ;10(1) is smaller than the causal conditional total

effect CTE X ;10(0), one may raise the question whether or not it would be worthwhile to

change the regime of assigning units to treatment, if this regime is under our control. ⊳

Remark 5.30 (Multivariate Random Variable V ) Also note that the concept of a causal

(V =v )-conditional total effect is not restricted to a univariate random variable V . In-

stead, V = (V1, . . . ,Vm) may also be an m-variate random variable such that a value v =

(v1, . . . , vm) of V is an m-tupel of values of the random variables V1, . . . ,Vm . ⊳
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5.3.3 Reaggregation

In the following theorem, we consider the expectation of a causal total effect function

CTEV ;xx ′. According to this theorem this expectation is identical to the causal average total

effect on Y comparing x to x ′.

Theorem 5.31 (Reaggregating a Conditional Total Effect Variable)

Let the assumptions of Definition 5.17 hold and let CTEV ;xx ′(V ) denote a causal V-con-

ditional total effect variable comparing x to x ′. Then

E
(

CTEV ;xx ′(V )
)

= ATE xx ′. (5.22)

(Proof p. 118)

Remark 5.32 (Expectation With Respect to the Distribution of V ) According to Theorem

5.31, the expectation of a causal V-conditional total effect function is identical to the aver-

age total effect. To emphasize, the expectation is with respect to the distribution of V , that

is,

E
(

CTEV ;xx ′(V )
)

= EV (CTEV ; xx ′) = ATE xx ′, (5.23)

which immediately follows from SN-Equation (6.13). Taking this expectation means to

reaggregate the (V =v)-conditional total effects to a single number, the causal average total

effect. ⊳

Remark 5.33 (The Proper Way of Reaggregation) Inserting the definition of CTEV ;xx ′(V )

[see Eq. (5.15)] into Equation (5.22) yields

ATE xx ′

= E
(

CTE V ; xx ′(V )
)

[(5.22)]

= E
(

E (τx −τx ′ |V )
)

[(5.15)]

= E (τx −τx ′) [SN-Box 10.2 (iv)]

= E
(

E X=x(Y |CX )−E X =x ′

(Y |CX )
)

[(4.7)]

= E
(

E X=x(Y |CX )
)

− E
(

E X =x ′

(Y |CX )
)

[SN-Box 6.1 (vii)]

(5.24)

These equations reveal that reaggregation means to consider the expectation of V-condi-

tional expectations. If Y is binary, then, according to the last of these equations, we take

the expectation of CX -conditional probabilities P X=x (Y =1|CX ) and P X =x ′

(Y =1|CX ), and

not of their log odds ratios or other transformations of these probabilities. A reaggrega-

tion of such transformed probabilities does not yield the causal average total effect (see

Exercise 5-12). ⊳

Now we turn to a less rigorous reaggregation of a causal total effect variable CTE V ; xx ′(V ),

considering a W-conditional expectation of CTE V ; xx ′(V ), which, according to this theo-

rem, is a W -conditional total effect variable CTEW ;xx ′(W ). Furthermore, the conditional

expectation value E
(

CTEV ;xx ′(V )
∣

∣W =w
)

is identical to the causal (W =w )-conditional

total effect on Y comparing x to x ′, if we assume P (W =w ) > 0.
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Theorem 5.34 (Reaggregating a Conditional Total Effect Variable)

Let the assumptions of Definition 5.17 hold and let CTEV ;xx ′(V ) denote a causal V-con-

ditional total effect variable on Y comparing x to x ′. Furthermore, let W be a random

variable on (Ω,A,P ) with value space (Ω′
W ,A ′

W) and let f : Ω′
V →Ω

′
W be a mapping such

that f −1(A ′
W )⊂A

′
V and W = f ◦V .

(i) Then

E
(

CTEV ;xx ′(V )
∣

∣W
)

=
P

CTE W ; xx ′(W ). (5.25)

(ii) If w ∈Ω′
W is a value of W such that P (W =w) > 0, then

E
(

CTEV ;xx ′(V )
∣

∣W =w
)

= CTE W ; xx ′(w). (5.26)

(Proof p. 118)

Remark 5.35 (Partial Reaggregation) According to Theorem 5.34 (i), the W-conditional

expectation of a causal V-conditional total effect function is almost surely (with respect to

P ) identical to a causal W-conditional total effect function, provided that W = f (V ) is a

measurable mapping of V . If W = f (V ) is a measurable mapping of V , then σ(W ) ⊂ σ(V )

(see SN-Th. 2.49), and if σ(W ) 6= σ(V ), then E
(

CTE V ; xx ′(V )
∣

∣W
)

may be called a partial

reaggregation of the original causal total effect function CTEV ; xx ′ (V ). It is tantamount

to coarsening the original causal total effect function CTEV ;xx ′(V ) to a less fine-grained

causal total effect function CTEW ;xx ′(W ). ⊳

Remark 5.36 (The Proper Way of Partial Reaggregation) Inserting the definition of the

causal conditional total effect variable CTE V ; xx ′(V ) [see Eq. (5.15)] into Equation (5.25)

yields

CTEW ;xx ′(W )

=
P

E
(

CTEV ;xx ′(V )
∣

∣W
)

[(5.25)]

=
P

E
(

E (τx −τx ′ |V )
∣

∣W
)

[(5.15)]

=
P

E (τx −τx ′ |W ) [SN-Box 10.2 (v)]

=
P

E
(

E X=x(Y |CX )−E X =x ′

(Y |CX )
∣

∣W
)

[(4.7)]

=
P

E
(

E X=x(Y |CX )
∣

∣W
)

− E
(

E X =x ′

(Y |CX )
∣

∣W
)

[SN-Box 10.2 (xv)]

(5.27)

These equations reveal that partial reaggregation means to consider a W -conditional ex-

pectation of a V -conditional expectation, presuming that W = f (V ) is a measurable func-

tion of V . If Y is binary, then, according to the last of these equations, we take a W -condi-

tional expectation of V -conditional probabilities P X=x (Y =1|CX ) and P X =x ′

(Y =1|CX ), and

not of their log odds ratios or other transformations of these probabilities. A reaggregation

of such transformed probabilities does not yield a causal conditional total effect function.

⊳
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5.4 Example: Joe and Ann With Bias at the Individual Level

Now we illustrate the various causal total effects by an example in which there are two

treatment variables. Such a two-factorial experiment has already been discussed at an in-

formal level in section 2.3 and example that is very similar has been presented in Table 4.1.

However, now the outcome variable is not binary any more. Furthermore, we exemplify

that bias can occur at the individual level at which the person variable is kept constant.

5.4.1 The Random Experiment

The parameters displayed in Table 5.1 refer to an experiment in which a person is drawn

from a set of two persons, each of which may or may not receive a first treatment, say

group therapy (represented by Z ), and, at the same time, receive or not receive a second

treatment, say individual therapy (represented by X ). Furthermore, both treatments af-

fect a quantitative outcome variable Y (e. g., well-being, life satisfaction, or a score on a

symptom checklist).

The set of possible outcomes of the random experiment is

Ω = ΩU ×ΩZ ×ΩX ×ΩY,

where

ΩU := { Joe,Ann },

ΩZ := {group therapy, no group therapy },

ΩX := {individual therapy,no individual therapy },

andΩY is the set of possible observations based on which the score of the outcome variable

Y is computed. If Y is discrete, then we may choose A = P (Ω), where P (Ω) denotes the

power set of Ω. However, if Y is continuous, then A is the product σ-algebra A =P (ΩU)⊗

P (ΩZ)⊗P (ΩX)⊗B, where B denotes the Borel σ-algebra on R (see SN-section 1.2.3).

In this example, the individual probabilities for the two kinds of treatments are as fol-

lows: Joe receives group therapy (Z=1) with probability P (Z=1 |U=Joe ) = 1/2 or no group

therapy (Z=0) with probability P (Z=0 |U=Joe ) = 1/2. Furthermore, Joe receives indi-

vidual therapy (X =1) with probability P (X =1 |U=Joe, Z=0) = 3/4 if he does not receive

group therapy (Z=0), and with probability P (X =1|U=Joe, Z=1) = 1/4 if he receives group

therapy (Z=1) as well. Similarly, Ann receives individual therapy (X =1) with probability

P (X =1 |U=Ann, Z=0) = 3/4 if she does not receive group therapy (Z=0), and with prob-

ability P (X =1 |U=Ann, Z=1) = 1/4 if she also receives group therapy (Z=1).

5.4.2 Choosing the Focused Treatment Variable

There are several true total causal effects we might look at. In principle, we might be inter-

ested in

(a1) the individual total effect on Y of group therapy (Z=1) compared to no group ther-

apy (Z=0) given that Joe (Ann) also receives individual therapy (X =1),

(b1) the individual total effect on Y of group therapy (Z=1) compared to no group ther-

apy (Z=0) given that Joe (Ann) does not receive individual therapy (X =0), and
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Table 5.1. Joe and Ann with bias at the individual level

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

G
ro

u
p

th
er

a
p

y
Z

P
(U

=
u

)

P
(Z

=
z
|U

)

P
(X

=
1
|U

,Z
)

τ 0
=

E
X
=

0
(Y

|U
,Z

)

τ 1
=

E
X
=

1
(Y

|U
,Z

)

δ
1

0
=
τ 1

−
τ 0

P
X
=

0
(Z

=
z
|U

)

P
X
=

1
(Z

=
z
|U

)

0 1/2 3/4 68 82 14 1/4 3/4
Joe 1/2

1 1/2 1/4 96 100 4 3/4 1/4

0 1/2 3/4 80 98 18 1/4 3/4
Ann 1/2

1 1/2 1/4 104 106 2 3/4 1/4

(c1) the average of these individual total effects, averaging over the two values of X (indi-

vidual therapy).

Of course, the latter effect is certainly less informative than the two conditional effects.

Similarly, we may also be interested in

(a2) the individual total effect on Y of individual therapy (X =1) compared to no individ-

ual therapy (X =0) given that Joe (Ann) also receives group therapy (Z=1),

(b2) the individual total effect of individual therapy (X =1) compared to no individual

therapy (X =0) on Y given that Joe (Ann) does not receive group therapy (Z=0), and

(c2) the average of these individual total effects of individual therapy, averaging over the

two values of Z (group therapy).

Looking at the effects (a1) to (c1), we consider individual therapy to be a (qualitative) co-

variate and group therapy to be the treatment variable asking for the conditional effects

of group therapy given individual therapy and their average, the ‘main effect’ of group

therapy. In contrast, looking at the effects (a2) to (c2), we consider group therapy to be a

(qualitative) covariate and individual therapy to be the treatment variable.

In principle, both treatment variables, X and Z , may take the role of a covariate (and

potential confounder), depending on which treatment effects we are studying, the effects of

(values of) X on Y or the effects of (values of) Z on Y . In this example, we focus on X as a

cause. In this case,

Ω1 =ΩU ×ΩZ, Ω2 =ΩX, and Ω3 =ΩY

[see Eq. (4.1)], and the bivariate random variable (U , Z ) is a global potential confounder of

X .

5.4.3 True Outcome Variables and True Total Effects

In the example presented in Table 5.1, CX = (U , Z ) is a global potential confounder of X

and CTEU ,Z ;10(U , Z ) is CX -measurable. Hence, the true outcome variables are
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τ0 = E X =0(Y |CX ) = E X =0(Y |U , Z ),

τ1 = E X =1(Y |CX ) = E X =1(Y |U , Z ).

The values of these two true outcome variables are displayed in Table 5.1.

Obviously, Joe’s total effect of the individual therapy is

E (Y |X =1, Z=0,U= Joe ) − E (Y |X =0, Z=0,U= Joe ) = 82 − 68 = 14, (5.28)

if he does not receive group therapy (Z =0), whereas it is

E (Y |X =1, Z=1,U= Joe ) − E (Y |X =0, Z=1,U= Joe ) = 100 − 96 = 4, (5.29)

if he does (Z =1). Similarly, Ann’s total effect of the individual therapy is

E (Y |X =1, Z=0,U= Ann ) − E (Y |X =0, Z=0,U= Ann ) = 98 − 80 = 18, (5.30)

if she does not receive group therapy (Z =0), whereas it is

E (Y |X =1, Z=1,U= Ann ) − E (Y |X =0, Z=1,U= Ann ) = 106 − 104 = 2, (5.31)

if she does (Z =1) (see Table 5.1). Hence, all these (U=u, Z=z)-conditional total effects are

positive, and they are the true total effects on Y [see Def. 5.2 (i)]. However, in this example,

these effects are not the individual effects (see section 5.4.6).

5.4.4 Causal Average Total Effect

Using the true total effects obtained in Equations (5.28) to (5.31), the causal average to-

tal effect of individual therapy (X =1) compared to no individual therapy (X =0) can be

computed by

E
(

CTEU ,Z ;10(U , Z )
)

=
∑

u

∑

z

(

E (Y |X =1,U=u, Z=z)−E (Y |X =0,U=u, Z=z)
)

·P (U=u, Z=z)

= 14 ·
1

4
+4 ·

1

4
+18 ·

1

4
+2 ·

1

4
= 9.5.

In these computations we used SN-Equation (6.15), and

P (U=u, Z=z) = P (Z=z |U=u) ·P (U=u) = 1/2 ·1/2 = 1/4

for all values (u, z) of the global potential confounder (U , Z ).

5.4.5 (U=u)-Conditional Prima Facie Effects

In this example, the differences

E (Y |X =1,U=Joe ) − E (Y |X =0,U=Joe )

and

E (Y |X =1,U=Ann) − E (Y |X =0,U=Ann)
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are the individual prima facie effects. They are not identical to the causal individual total

effects, that is, they are not the values of the causal U -conditional total effect function.

In this example, these individual prima facie effects are biased, in the sense that will be

explicated in chapter 6.

In order to compute the conditional expectation values of Y given treatment and unit,

we use the equation

E (Y |X=x ,U=u) =
∑

z

E (Y |X=x ,U=u, Z=z) ·P (Z=z |X=x ,U=u), (5.32)

which is always true if P (X=x ,U=u) > 0 and Z is discrete with P (X=x ,U=u, Z=z) > 0

for all values of Z [see SN-Box 9.2 (ii)]. Both kinds of parameters occurring on the right-

hand side of this equation are displayed in Table 5.1. The conditional expectation val-

ues E (Y |X=x ,U=u, Z=z) are among the fundamental parameters.2 The probabilities

P (Z=z |X=x ,U=u) have been computed from the fundamental parameters via:

P (Z=z |X=x ,U=u) =
P (X=x |U=u, Z=z) ·P (Z=z |U=u)

∑

z
P (X=x |U=u, Z=z) ·P (Z=z |U=u)

(5.33)

(see Exercises 5-11 and 5-13).

Hence, using Equation (5.32), the (X=x,U =Joe )-conditional expectation values for Joe

are

E (Y |X=1,U=Joe) = 82 ·
3

4
+100 ·

1

4
= 86.5,

E (Y |X=0,U=Joe) = 68 ·
1

4
+96 ·

3

4
= 89,

and his individual prima facie effect is

E (Y |X=1,U=Joe) − E (Y |X=0,U=Joe) = 86.5 − 89 = −2.5. (5.34)

In this example, the individual prima facie effect of individual therapy compared to

no individual therapy are negative, namely −2.5, although all (U =Joe , Z=z)-conditional

effects are positive, namely 14 for U=Joe and Z =0 (e. g., given Joe and no group therapy)

and 4 for U=Joe and Z =1 (e. g., given Joe and group therapy).

Similarly, using Equation (5.32), the (X=x,U =Ann )-conditional expectation values for

Ann are

E (Y |X=1,U=Ann) = 98 ·
3

4
+106 ·

1

4
= 100,

E (Y |X=0,U=Ann) = 80 ·
1

4
+104 ·

3

4
= 98,

and her individual prima facie effect is

E (Y |X=1,U=Ann) − E (Y |X=0,U=Ann) = 100 − 98 = 2. (5.35)

This prima facie effect does not have a causal interpretation. It is not identical to the causal

(U =Ann )-conditional total effect of X on Y , which will be computed in section 5.4.6.

2 The term ‘fundamental parameter’ has no deeper meaning. It simply refers to the fact that these parameters can

be used to compute the joint and marginal distributions of U , Z , and X , as well as the values of the conditional

expectation E(Y |U , Z , X ).
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5.4.6 Causal (U=u)-Conditional Total Effects

Because CX = (U , Z ) is a global potential confounder in the example presented in Table

5.1, the causal (U=u)-conditional (or individual) total effects of individual therapy (X =1)

compared to no individual therapy (X =0) can be computed for Joe by

CTEU ;10( Joe ) = E
(

CTEU ,Z ;10(U , Z ) |U =Joe
)

= E
(

E X =1(Y |U , Z )−E X =0(Y |U , Z )
∣

∣ U =Joe
)

=
∑

u

∑

z

(

E (Y |X =1,U=u, Z=z)−E (Y |X =0,U=u, Z=z)
)

·P (U=u, Z=z |U=Joe)

= (82−68) ·
1

2
+ (100−96) ·

1

2
+ (98−80) ·0+ (106−104) ·0 = 9

[see Eq. (5.26)and SN-Eq. (9.19)], and for Ann by

CTEU ;10( Ann ) = E
(

CTEU ,Z ;10(U , Z ) |U =Ann
)

= E
(

E X =1(Y |U , Z )−E X =0(Y |U , Z )
∣

∣ U =Ann
)

=
∑

u

∑

z

(

E (Y |X =1,U=u, Z=z)−E (Y |X =0,U=u, Z=z)
)

·P (U=u, Z=z |U=Ann)

= (82−68) ·0+ (100−96) ·0+ (98−80) ·
1

2
+ (106−104) ·

1

2
= 10.

Hence, in this example, the two individual total effects for Joe and Ann are both positive.

Comparing the causal individual effect CTEU ;10( Joe ) = 9 to the corresponding prima fa-

cie effect−2.5 [see Eq. (5.34)] shows that the individual prima facie effect E (Y |X=1,U=Joe)

− E (Y |X=0,U=Joe) strongly differs from its causal counterpart, and the same applies

to the individual prima facie effect of Ann. This is evident if we compare her prima fa-

cie effect E (Y |X=1,U=Ann) − E (Y |X=0,U=Ann) = 2 to Ann’s causal individual effect

CTEU ;10( Ann ) = 10.

According to Equation (5.22), the expectation of these causal individual effects,

E
(

CTEU ;10(U )
)

= E
(

E X =1(Y |U , Z )−E X =0(Y |U , Z )
∣

∣U
)

=
∑

u

CTEU ;10(u) ·P (U=u) = 9 ·
1

2
+ 10 ·

1

2
= 9.5,

is the causal average total effect ATE 10 of individual therapy compared to no individual

therapy.

Causal individual total effects are more informative than the causal average total effect

and usually more informative than causal conditional total effects given a value of a pre-

test or a second treatment variable as in this example. However, note again that causal

individual (i. e., (U=u)-conditional) total effects are not necessarily the most fine-grained

causal total effects. In this example, there is a second treatment variable, denoted Z , that

contributes to the variation of the outcome variable Y beyond the individual level. This

is exemplified comparing the causal (U=u, Z=z)-conditional total effects to the causal

(U=u)-conditional total effects.
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5.4.7 Causal (Z =z)-Conditional Total Effects

In the example presented in Table 5.1, the causal (Z=0)-conditional (i. e., given no group

therapy) total effect of individual therapy (X =1) compared to no individual therapy

(X =0) can be computed by

CTE Z ;10(0) = E
(

CTEU ,Z ;10(U , Z ) |Z=0
)

= E
(

E X =1(Y |U , Z )−E X =0(Y |U , Z )
∣

∣ Z=0
)

=
∑

u

∑

z

(

E (Y |X =1,U=u, Z=z)−E (Y |X =0,U=u, Z=z)
)

·P (U=u, Z=z |Z=0)

= (82−68) ·
1

2
+ (100−96) ·0+ (98−80) ·

1

2
+ (106−104) ·0 = 16

[see Eqs. (5.26) and SN-(9.19)]. The corresponding causal (Z=1)-conditional (i. e., given

group therapy) total effect is

CTE Z ;10(1) = E
(

CTEU ,Z ;10(U , Z ) |Z=1
)

= E
(

E X =1(Y |U , Z )−E X =0(Y |U , Z )
∣

∣ Z=1
)

=
∑

u

∑

z

(

E (Y |X =1,U=u, Z=z)−E (Y |X =0,U=u, Z=z)
)

·P (U=u, Z=z |Z=1)

= (82−68) ·0+ (100−96) ·
1

2
+ (98−80) ·0+ (106−104) ·

1

2
= 3.

According to Equation (5.22), taking the expectation

E
(

CTE Z ;10(Z )
)

=
∑

z

E
(

CTE Z ;10(z) |Z=z
)

·P (Z=z) = 16 ·
1

2
+ 3 ·

1

2
= 9.5 (5.36)

again yields the average total effect. In this equation, we used the theorem of total proba-

bility in order to compute P (Z=z) =
∑

u P (Z=z |U=u) ·P (U=u) (see SN-Th. 4.25), which

yields P (Z=0) = P (Z=1) = 1/2.

5.4.8 Causal (X=x)-Conditional Total Effects

Consider again the example presented in Table 5.1. Because CX = (U , Z ), the causal

(X =0)-conditional total effect of individual therapy (X =1) compared to no individual

therapy (X =0) can be computed by

CTE X ;10(0) = E
(

CTEU ,Z ;10(U , Z ) |X =0
)

=
∑

u

∑

z

(

E (Y |X =1,U=u, Z=z)−E (Y |X =0,U=u, Z=z)
)

·P (U=u, Z=z |X =0)

= (82−68) ·
1

8
+ (100−96) ·

3

8
+ (98−80) ·

1

8
+ (106−104) ·

3

8
= 6.25

[see again Eqs. (5.26) and SN-(9.19)]. In contrast,

CTE X ;10(1) = E
(

CTEU ,Z ;10(U , Z ) |X =1
)
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=
∑

u

∑

z

(

E (Y |X =1,U=u, Z=z)−E (Y |X =0,U=u, Z=z)
)

·P (U=u, Z=z |X =1)

= (82−68) ·
3

8
+ (100−96) ·

1

8
+ (98−80) ·

3

8
+ (106−104) ·

1

8
= 12.75

yields the (X =1)-conditional total effect of individual therapy (X =1) compared to no in-

dividual therapy (X =0). In these equations, we used

P (U=u, Z=z |X=x) =
P (X=x |U=u, Z=z) ·P (U=u, Z=z)

P (X=x)
. (5.37)

According to Equation (5.22), taking the expectation

E
[

CTE X ;10(X )
]

=
∑

x

CTE X ;10(x) ·P (X=x) = 6.25 ·
1

2
+ 12.75 ·

1

2
= 9.5

yields the causal average total effect. In this equation, we again used the theorem of total

probability, that is, P (X=x) =
∑

u

∑

z P (X=x |U=u, Z=z) ·P (U=u, Z=z) (see SN-Th. 4.25),

which yields P (X =0) = P (X =1) = 1/2.

According to these results, the assignment regime as described by the individual treat-

ment probabilities in Table 5.1 seems to be reasonable, because the causal (X =1)-condi-

tional total effect CTE X ;10(1) = 12.75 [of treatment (X =1) compared to control (X =0)] is

greater than the corresponding causal (X =0)-conditional total effect CTE X ;10(0) = 6.25. If,

in contrast, CTE X ;10(1) <CTE X ;10(0) would be true, then it might be worthwhile to change

the assignment regime for the treatment represented by X =1 assigning those persons to

treatment 1 that are now assigned to treatment 0.

5.4.9 (X =x∗,V =v )-Conditional Total Effects

If X represents a treatment variable and V is a mapping of the person variable U , this

allows us, for instance, to ask for the causal conditional effects of a treatment x compared

to treatment x ′ given treatment x∗ in specific subpopulations represented by the values v

of V . The corresponding question can also be raised if V is a fallible covariate of X . In these

cases we can consider

CTE X ,V ;xx ′(x∗, v), (5.38)

the causal (X=x∗,V =v)-conditional total effect of x compared to x ′, provided that we can

assume P (X=x∗,V =v) > 0.

Suppose that X represents a treatment variable. If there are two treatment conditions,

say control (X =0) and treatment (X =1), then, according to Equation (5.38), we may con-

sider CTE 10(1, v), the causal conditional total effect given treatment and V =v , as well as

CTE X ,V ;10(0, v), the causal conditional total effect given control and V =v . If, for example,

V is the potential confounder sex, then CTE X ,V ;10(1,m) is the causal (X =1,V =m)-condi-

tional total treatment effect (in the male subpopulation), whereas CTE X ,V ;10(1, f ), is the

causal (X =1,V = f )-conditional total treatment effect (in the female subpopulation). As

mentioned before, in more precise terms conditioning on a subpopulation means that we

condition on the event {V =v} = {ω ∈ Ω : V (ω)=v} that the person drawn is an element of

the subpopulation represented by the value v of V .
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Example 5.37 (Joe and Ann With Bias at the Individual Level) In the example presented

in Table 5.1, CX = (U , Z ) is a global potential confounder of X and CTEU ,Z ;10(U , Z ) is CX -

measurable. Hence, there is a measurable function CTEU ,Z ;10 : (ΩU,Ω′
Z ) → (R,B) such that

CTEU ,Z ;10(U , Z ) is the composition of (U , Z ) and CTEU ,Z ;10 (see SN-Lemma 2.52). Because

(U , Z ) is a global potential confounder,

CTEU ,Z ;10(U , Z ) = δ10 = τ1 − τ0,

that is, CTEU ,Z ;10(U , Z ) is a version of the true effect variable. In this example, δ10 is

uniquely defined, because the probabilities P (X=x,U=u, Z=z) are positive for all triples

of values of X , U , and Z . The values of CTEU ,Z ;10(U , Z ) are:

CTEU ,Z ;10(U , Z )(ω)

= CTEU ,Z ;10(u, z)

= E X =1(Y |U=u, Z=z) − E X =0(Y |U=u, Z=z), ∀ω with (U , Z )(ω)= (U=u, Z=z)

(see Rem. 4.18). According to Table 5.1, these values are 14, 4, 18, and 2. Hence, the causal

average total effect of individual therapy (X =1) compared to no individual therapy (X =0)

can be computed by

E
(

CTEU ,Z ;10(U , Z )
)

=
∑

u

∑

z

(

E X =1(Y |U=u, Z=z)−E X =0(Y |U=u, Z=z)
)

·P (U=u, Z=z)

= 14 ·
1

4
+4 ·

1

4
+18 ·

1

4
+2 ·

1

4
= 9.5,

using SN-Equation (6.15), and

P (U=u, Z=z) = P (Z=z |U=u) ·P (U=u) = 1/2 ·1/2 = 1/4,

for all values (u, z) of CX = (U , Z ). ⊳

5.4.10 Causal (X=x, Z =z)-Conditional Total Effects

Because, in the example presented in Table 5.1, (U , Z ) is a global potential confounder,

the causal conditional total effect CTE X ,Z ;10(x, z) of individual therapy (X =1) compared

to no individual therapy (X =0) given X=x and Z=z can be computed by

CTE X ,Z ;10(x, z) = E
(

CTEU ,Z ;10(U , Z )
∣

∣X=x, Z=z
)

=
∑

u

∑

z ′

[

E X =1(Y |U=u, Z=z ′)−E X =0(Y |U=u, Z=z ′)
]

·P (U=u, Z=z ′
|X=x, Z=z).

If z ′ 6=z, then the conditional probabilities P (U=u, Z=z ′ |X=x, Z=z) are zero. Otherwise

they can be computed via

P (U=u, Z=z |X=x , Z=z) =
P (X=x |U=u, Z=z) ·P (U=u, Z=z)

P (X=x |Z=z) ·P (Z=z)
, (5.39)

where

P (X=x |Z=z) =
∑

u

P (X=x |U=u, Z=z) ·P (U=u |Z=z) , (5.40)
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with P (U=u |Z=z) = P (Z=z |U=u) ·P (U=u)/P (Z=z). In this example, P (U=u |Z=z) =

1/2, for all values of U and Z . Hence, Equation (5.40) yields P (X =0 |Z=0) = 1/4·1/2+1/4·

1/2 = 1/4, and using Equation (5.39) we receive:

P (U=u, Z=0 |X =0, Z=0) =
1/4 ·1/4

1/4 ·1/2
=

1

2
,

for u=Joe and for u=Ann. Hence, the equation for E
(

CTEU ,Z ;10(U , Z )
∣

∣X=x, Z=z
)

yields

E
(

CTEU ,Z ;10(U , Z )
∣

∣X =0, Z=0
)

= (82−68) ·
1

2
+ (100−96) ·0+ (98−80) ·

1

2
+ (106−104) ·0 = 16.

For X =1 and Z=0, we receive

E
(

CTEU ,Z ;10(U , Z )
∣

∣X =1, Z=0
)

= (82−68) ·
1

2
+ (100−96) ·0+ (98−80) ·

1

2
+ (106−104) ·0 = 16,

for X =0 and Z=1, we receive

E
(

CTEU ,Z ;10(U , Z )
∣

∣X =0, Z=1
)

= (82−68) ·0+ (100−96) ·
1

2
+ (98−80) ·0+ (106−104) ·

1

2
= 3,

and for X =1 and Z=1:

E
(

CTEU ,Z ;10(U , Z )
∣

∣X =1, Z=1
)

= (82−68) ·0+ (100−96) ·
1

2
+ (98−80) ·0+ (106−104) ·

1

2
= 3.

Hence, in this special example, the conditional total effects E
(

CTEU ,Z ;10(U , Z )
∣

∣Z=z
)

and

E
(

CTEU ,Z ;10(U , Z )
∣

∣X=x, Z=z
)

are identical.

According to Equation (5.22), taking the expectation

E
(

E
(

CTEU ,Z ;10(U , Z )
∣

∣X , Z
)

)

=
∑

x

∑

z

E
(

CTEU ,Z ;10(U , Z )
∣

∣X=x, Z=z
)

·P (X=x, Z=z)

= 16 ·
1

4
+ 3 ·

1

4
+ 16 ·

1

4
+ 3 ·

1

4
= 9.5,

yields the average total effect. In this equation, we again used the theorem of total prob-

ability, that is, P (X=x, Z=z) =
∑

u P (X=x, Z=z |U=u) ·P (U=u) (see SN-Th. 4.25), which

yields P (X=x, Z=z) = 1/4, for all values of X and Z .

5.5 Summary and Conclusions

In this chapter we defined several kinds of causal total effects of x compared to x ′ based

on the true total effect variable
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Box 5.1 Glossary of New Concepts

Let the Assumptions 5.1 hold and let V be a random variable on (Ω,A,P) with value space

(Ω′
V ,A ′

V ).

ATE xx ′ Causal average total effect comparing x to x ′. If τx and τx ′ are P-unique,

then

ATE xx ′ := E(τx −τx ′ ).

CTE V ; xx ′ (V ) Causal V-conditional total effect variable comparing x to x ′. If τx and τx ′

are P-unique, then

CTEV ; xx ′ (V ) := E(τx −τx ′ |V ).

CTE V ; xx ′(v) Causal (V =v )-conditional total effect comparing x to x ′. If τx and τx ′ are

PV =v -unique, then

CTEV ;xx ′(v) := E(τx −τx ′ |V =v ).

CTEU ; xx ′(u) Causal individual total effect comparing x to x ′ for unit u. It is a special

case of CTEV ; xx ′(v) for U=V .

CTE X ;xx ′(x∗) Causal (X =x∗)-conditional total effect comparing x to x ′. It is a special

case of CTEV ; xx ′(v) for X =V .

δxx ′ = τx − τx ′ .

The definitions of a causal average total effect ATE xx ′ and of a causal V-conditional total

effect variable CTE V ; xx ′(V ) (see Box 5.1) are based on the assumption that the two true

outcome variables τx and τx ′ are P-unique. Defining the causal (V =v)-conditional total

effect CTEV ;xx ′(v) we only assume that τx and τx ′ are PV =v-unique. The term ‘total’ is used

in order to distinguish these effects from direct and indirect effects that are not considered

in this volume.

While CX is a global potential confounder of X on which we condition in order to con-

trol for all potential confounders of X , the variable V may be used to reaggregate the

(CX =c)-conditional total effects in order to consider less fine-grained causal conditional

total effects. Examples of V are the observational-unit variable U , a pre-treatment variable

Z , and the treatment variable X .

Causal Average Total Effect

Often we have to content ourselves with the causal average total effect or causal condi-

tional total effects. Note, however, that a causal average total effect may not apply to any

unit at all. There might very well be cases in which half of the units have positive causal

individual total effects and the other half negative ones. The causal average total effect

can then be zero. This is not a paradox but the nature of an average. Also remember that a

causal average total effect is already much more informative for causal inference than an

ordinary true mean difference E (Y |X =1)−E (Y |X =0), the prima facie effect considered
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in chapter 1. These prima facie effects have no causal interpretation at all, unless they are

identical to the causal average total effect (see Def. 6.2).

Main Effects Versus Conditional Effects

Conceptually, the causal average total effect is what is tested in a two-group t-test and as

the main effect of the ‘treatment factor’ in orthogonal analysis of variance, provided that

the data are sampled in a perfect randomized experiment. Note that the causal average to-

tal effect is uniquely defined even if there are inter-individual differences in the individual

total effects, and even if there is interaction between X and a potential confounder V in

the sense that the effect of X depends on the values of V . The causal average total effect is

uniquely defined even if X and V are correlated or stochastically dependent. If V is a qual-

itative covariate, it is considered a second ‘factor’ in analysis of variance, and the causal

average total effects are what we test as the main effect of the ‘treatment factor’. However,

only in the randomized experiment we can be sure that with the main effects in analysis

of variance we test the causal average total effects.

Of course, the causal conditional effects given the values of a covariate are usually more

informative than their average, that is, than the causal average total effect; but sometimes

averaging is useful in order to avoid information overload, and sometimes we may be able

to estimate precisely enough only the causal average effect, but not the causal conditional

effects, for example, because of small sample sizes. If V is a nonnumerical random variable

with a few number of values, it is often considered a second factor in analysis of variance.

In this case, the (V =v)-conditional total effects are often called the ‘simple main effects’

(see, e. g., Woodward & Bonett, 1991).

Pre-Facto Versus Counterfactual Perspective

Note that our definitions of the various kinds of total effects solely use concepts of prob-

ability theory. No concepts had to be borrowed from philosophy or any other science —

although the basic idea goes back at least to Mill (1843/1865). We did not take a counterfac-

tual but a pre-facto perspective, which is the perspective taken in every application of prob-

ability theory. Causal total effects are parameters, just in the same way as the probability of

flipping ‘heads’ is a parameter about which we can talk before the coin is flipped and even

if the coin is never flipped. Therefore, it is also meaningful to talk about the causal individ-

ual effects of a treatment for a unit which is actually never treated, and about the causal

average effect of a treatment including also those that are not treated. It is even meaningful

to talk about the causal conditional effect of a treatment given control [see Eq. (5.19) and

Rem. 5.26].

Outlook

Note that all concepts introduced in this chapter such as the causal average total effects,

causal conditional total effects, causal individual total effects, and so on, are of a purely the-

oretical nature. They explicate what exactly we are looking for when we ask for the causal

effects, for example, of a treatment variable or of another discrete cause. This also applies

to the examples treated in chapters 4 and 5. For example, Table 4.1 and Table 5.1 do not

show data that might be obtained in a data sample. Instead, they contain the theoreti-
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cal parameters we would like to estimate from sample data, and this includes the various

causal effects. In terms of the metaphor presented in the preface, these causal effects are

the size of the invisible man. In contrast, in chapter 1, we only dealt with the prima fa-

cie effects: (a) ordinary conditional expectation values E (Y |X=x) of an outcome variable

Y given treatment x, (b) conditional expectation values E (Y |X=x, Z=z) of the outcome

variable given treatment x and value z of a covariate Z , (c) differences between these

(conditional) expectation values, the (conditional) prima facie effects, and (d) averages

over these conditional prima facie effects. The conditional expectation values E (Y |X=x)

and E (Y |X=x , Z=z) are easily estimated under the usual assumptions made for a sam-

ple, such as the assumption of independent, identically distributed observations. How-

ever, they are only like the length of the invisible man’s shadow; depending on the angle

of the sun, they can be seriously biased if mistaken for the size of the invisible man itself.

Consequently, the next chapter is devoted to unbiasedness of the conditional expectation

values such as E (Y |X=x) and E (Y |X=x , Z=z) and their differences between different val-

ues x and x ′ of X .

5.6 Proofs

Proof of Theorem 5.31

E
(

CTEV ;xx ′ (V )
)

= E
(

E (τx −τx ′ |V )
)

[(5.16)]

= E (τx −τx ′ ). [SN-Box 10.2 (iv)]

Proof of Theorem 5.34

(i)

E
(

CTEV ;xx ′ (V )
∣

∣W
)

=
P

E
(

E (τx −τx ′ |V )
∣

∣W
)

[(5.16)]

=
P

E (τx −τx ′ |W ). [SN-Box 10.2 (v)]

(ii)
E

(

CTEV ; xx ′ (V )
∣

∣W =w
)

= E
(

E (τx −τx ′ |V )
∣

∣W =w
)

[(5.16)]

= E (τx −τx ′ |W =w ). [SN-(10.37)]

5.7 Exercises

⊲ Exercise 5-1 Suppose X is a treatment variable and Y an outcome variable. Why are the condi-

tional expectation values E(Y |X=x ) and their differences E(Y |X=x )−E(Y |X =x ′ ), the prima facie

effects, often useless in the evaluation of treatment effects?

⊲ Exercise 5-2 Suppose X is a treatment variable and Y an outcome variable. If the conditional

expectation values E(Y |X=x ) and their differences E(Y |X=x )−E(Y |X =x ′) do not represent the

treatment effects we are interested in, then what are the treatment effects we would like to study?
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⊲ Exercise 5-3 What is the difference between the causal average total effect ATE xx ′ and the prima

facie effect PFExx ′?

⊲ Exercise 5-4 What is the causal conditional total effect CTEV ; xx ′(v) on Y comparing x to x ′ given

the value v of a random variable V ?

⊲ Exercise 5-5 What is the causal conditional total effect CTE X ;xx ′(x∗) on outcome variable Y com-

paring x to x ′ given treatment x∗?

⊲ Exercise 5-6 Show that E(Y 2) <∞ implies ∃Vx ∈ E
X=x(Y |CX ) such that E(Vx ) <∞.

⊲ Exercise 5-7 What is the causal conditional total effect CTE X ,V ; xx ′(x∗, v) on Y comparing x to x ′

given treatment x∗and value v of the covariate V ?

⊲ Exercise 5-8 Use SN-Theorem 4.25 to compute the probability P(X =1) for the example displayed

in Table 5.1.

⊲ Exercise 5-9 What are the elements of the σ-algebra generated by Z in Example 5.4?

⊲ Exercise 5-10 Show that proposition (5.20) follows from independence of X and CX .

⊲ Exercise 5-11 Compute the probability P(U=Ann, Z=0 |X =1) in the example of Table 5.1.

⊲ Exercise 5-12 Use the Aggregation[0,1]Xplorer (see ‘Tools’ at www.causal-effects.de), choose the

example ‘Treatment effect, X and Z are dependent [Inversion of SME and MEM]’, and click on ‘Com-

pute aggregated effects and visualizations’.

⊲ Exercise 5-13 Compute the probabilities P(Z=z |X=x ,U=u) in Table 5.1.

⊲ Exercise 5-14 Compute the causal average total effect ATE 10 for the random experiment pre-

sented in Table 5.1.

⊲ Exercise 5-15 Compute the causal conditional total effect CTE Z ;10(0) given no group therapy for

the random experiment presented in Table 5.1.

⊲ Exercise 5-16 Let Z represent sex with values m (males) and f (females). Furthermore, suppose

CTE Z ;20(m) = 11, CTE Z ;20( f ) = 5, P(Z=m) = 1/3, and P(Z= f ) = 2/3. Which is the causal average

total effect ATE 10?

Solutions

⊲ Solution 5-1 Certain other variables, the potential confounders, may determine both the prob-

ability of being treated and the (X=x )-conditional expectation values of the outcome variable.

This implies that the conditional expectation values E(Y |X=x ) and their differences E(Y |X=x ) −

E(Y |X =x ′ ) are not identical to the treatment effects to be studied. An example of such a potential

confounder is severity of the symptoms. If there is self-selection or if there is systematic selection

to treatment by experts that is also determined by the severity of the symptoms, then the variable

severity of the symptoms will both affect the treatment probability and the conditional expectation

values of the outcome variable (e. g., severity of the symptoms after treatment). Simpson’s paradox

presented in chapter 1 is another example.
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⊲ Solution 5-2 The basic idea is to consider the true total effect variable, that is, the difference

τx −τx ′ = E X=x(Y |CX )−E X =x ′
(Y |CX ), where we condition on a global potential confounder CX .

This means controlling for all potential confounders and then taking the expectation over the dis-

tribution of CX , which yields E(τx −τx ′ ), the causal average total effect comparing x to x ′. Note that

this concept presumes that τx and τx ′ are P-unique. This assumption implies that the expectation

E(τx −τx ′ ) is identical for all versions of τx and τx ′ (see Defs. 3.79 and 4.16).

⊲ Solution 5-3 The causal average total effect ATE xx ′ comparing treatment x to treatment x ′ has

been defined by Equation (5.7) (see also the solution to Exercise 5-2). It is these causal average total

effects that might be of interest in the empirical sciences if our goal is to evaluate the treatment con-

ditions x and x ′ using the outcome variable Y . In contrast, the prima facie effects PFExx ′ comparing

x to x ′ are usually not of interest for the evaluation of such treatment effects because they can be

biased. Both terms differ from each other because PFExx ′ = E(Y |X=x )−E(Y |X =x ′) is not necce-

sarily identical to ATE xx ′ . Note, however, that there are conditions under which PFExx ′ = ATE xx ′ .

Such conditions, which are called causality conditions, are studied in some detail in the chapters to

come.

⊲ Solution 5-4 The causal conditional total effect (on the outcome variable Y ) comparing x to x ′

given the value v of a random variable V is the (V =v )-conditional expectation value of the true total

effect variable δxx ′ = τx −τx ′ , that is,

CTE V ; xx ′(v) = E(δxx ′ |V =v ).

If v represents a subpopulation such as males, then CTEV ;xx ′(v) is the average total effect in this

subpopulation. It is presumed that P(V =v ) > 0 and that τx and τx ′ are PV =v-unique.

⊲ Solution 5-5 The causal conditional total effect (on outcome variable Y ) comparing x to x ′ given

treatment x∗ is the (X =x∗)-conditional expectation value of δxx ′ = τx −τx ′ , that is,

CTE X ;xx ′(x∗) = E (δxx ′ |X =x∗),

where we presume that P(X =x∗) > 0 and that τx and τx ′ are P X =x∗-unique. If X represents a treat-

ment variable, x∗=x and X = 0 represents a control group, then CTE X ; x0(x) is the causal conditional

total effect comparing treatment x to control given treatment x. If x ′=x∗ and X = 0 represents a

control group, then CTE X ; x0(0) is the causal conditional total effect comparing treatment x to con-

trol given control. Although this sounds paradoxical, the term CTE X ;x0(0) is meaningful and well-

defined, because it refers to a random experiment to be conducted in the future. This means that

they are well-defined, even if the experiment is not yet conducted, or is never conducted (see sec-

tion 5.3.2 for more details).

⊲ Solution 5-6

E(Y 2) <∞

⇒ E(Y ) <∞ [SN-Rem. 6.25 (iii)]

⇒ E X=x(Y ) <∞ [SN-Th. 9.4 (ii), SN-(9.5), SN-(9.6)]

⇒ E X=x
(

E X=x(Y |CX )
)

= E X=x(Y ) <∞. [SN-Box 10.2 (iv)]

⊲ Solution 5-7 The causal conditional total effect CTE X ,V ; xx ′(x∗, v) (on the outcome variable Y )

comparing x to x ′ given treatment x∗ and value v of the covariate V is the (X =x∗,V =v )-conditional

expectation value of the true-effect variable, that is,

CTE X ,V ; xx ′(x∗, v) = E(δxx ′ |X =x∗,V =v ),

where we presume that P
(

(X ,V )=(x∗, v)
)

> 0 and that τx and τx ′ are P X =x∗,V =v -unique. If X repre-

sents a treatment variable, x∗=x , the value 0 of X represents a control group, and m is the value for
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males of the covariate V = sex, then CTE X ,V ;x0(x,m) is the causal conditional total effect comparing

treatment x to control given treatment x and a person is sampled from the male subpopulation. If

x∗= 0, then CTE X ,V ; x0(0,m) is the causal conditional total effect comparing treatment x to control

given control and a person is sampled from the male subpopulation.

⊲ Solution 5-8 Note that the four pairs (u, z) of values of U and Z are disjoint and all these pairs of

values have positive probabilities. Hence we can apply the theorem of total probability:

P(X =1) =
∑

u

∑

z
P(X =1 |U=u , Z=z) ·P(U=u , Z=z)

=

(

3

4
+

1

4
+

3

4
+

1

4

)

·
1

4
=

1

2
.

Note that P(X =1) = E(1X =1) = E [E(1X =1 |U , Z )] [see SN-Box 10.2 (iv)], and that the probabil-

ities P(X =1 |U=u , Z=z) are the values of the conditional expectation E(1X =1 |U , Z ). Then using

SN-Equation (6.15) yields the same formula. This second way makes clear that the unconditional

probability P(X =1) is the expectation of the conditional probability P(X =1 |U , Z ).

⊲ Solution 5-9 The set of possible outcomes of the random experiment is

Ω := ΩU ×ΩZ ×ΩX ×ΩY,

where ΩZ := {group therapy,no group therapy}. Hence, the σ-algebra generated by Z and A
′

Z =
{

{0},{1},{0,1},Ø
}

is

σ(Z ) =
{

Ω, Ø, ΩU × {group therapy}×ΩX ×ΩY, ΩU × {no group therapy}×ΩX ×ΩY

}

.

Hence, this set has four elements. Aside from Ω and the empty set Ø, this σ-algebra contains the

event

ΩU × {group therapy}×ΩX ×ΩY

that the person drawn receives group therapy, and the event

ΩU × {no group therapy}×ΩX ×ΩY

that the person drawn does not receive group therapy.

⊲ Solution 5-10 Independence of X and CX implies that also X and E X=x(Y |CX ) are independent,

because E X=x(Y |CX ) is CX -measurable [see SN-Box 16.3 (vi)]. Hence,

E(τx |X ) =
P

E
(

E X=x(Y |CX ) |X
) [

τx =
P

E X=x(Y |CX )
]

=
P

E(τx ). [SN-Box 10.2 (vi)]

⊲ Solution 5-11 We have to use the equation

P(U=u , Z=z |X=x ) =
P(X=x ,U=u , Z=z)

P(X=x )
=

P(X=x |U=u , Z=z) ·P(U=u , Z=z)

P(X=x )
.

For U=Ann, Z=0, and X =1 this equation yields

P(U=Ann, Z=0 |X =1) =
P(X =1 |U=Ann, Z=0) ·P(U=Ann, Z=0)

P(X =1)

=
3/4 ·1/4

1/2
=

3

8
.

⊲ Solution 5-12 No solution provided. See what happens with the various techniques of aggregat-

ing conditional effects, for example, aggregating the log odds ratios. Play with other parameter con-

stellations.
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⊲ Solution 5-13 The complementary probability to P(X =1 |U=u, Z=0) = 3/4 is P(X = 0 |U=u , Z=0)

= 1/4 for both units u. Similarly the complementary probability to P (X =1 |U=u , Z=1) = 1/4 is

P(X = 0 |U=u , Z=1) = 3/4. Now we can use the equation

P(Z=z |X=x ,U=u) =
P(X=x |U=u , Z=z ) ·P(Z=z |U=u)

∑

z
P(X=x |U=u , Z=z) ·P(Z=z |U=u)

.

For example, the probability of not receiving group therapy (Z=0), if Ann is drawn (U=Ann) and

does not receive individual therapy (X = 0), is

P(Z=0 |X = 0,U=Ann ) =
P(X = 0 |U=Ann, Z=0) ·P(Z=0 |U=Ann )

∑

z
P(X = 0 |U=Ann, Z=z) ·P(Z=z |U=Ann )

,

where P(X = 0 |U=Ann, Z=0) = 1/4, P(Z=0 |U=Ann ) = 1/2, and

∑

z
P(X = 0 |U=Ann, Z=z) ·P(Z=0 |U=Ann )

= P(X = 0 |U=Ann, Z=0) ·P(Z=0 |U=Ann ) + P(X = 0 |U=Ann, Z=1) ·P(Z=1 |U=Ann )

=
1

4
·

1

2
+

3

4
·

1

2
=

1

2
.

Inserting this result yields the probability P(Z=0 |X = 0,U=Ann ) = 1/4. Using the same procedure

for all values of U , X , and Z leads to the probabilities displayed in Table 5.1.

⊲ Solution 5-14

ATE 10 =
∑

u

∑

z

(

E(Y |X =1,U=u , Z=z)−E(Y |X = 0,U=u , Z=z)
)

·P(U=u , Z=z)

=
(

(82−68)+ (100−96)+ (98−80)+ (106−104)
)

·
1

4
= 9.5.

⊲ Solution 5-15

CTE Z ;10(0) =
∑

u

∑

z

(

E(Y |X =1,U=u, Z=z)−E(Y |X = 0,U=u , Z=z)
)

·P(U=u , Z=z |Z=0)

= (82−68) ·
1

2
+ (100−96) ·0+ (98−80) ·

1

2
+ (106−104) ·0 = 16.

⊲ Solution 5-16 Using Equation (5.22), we can compute the causal average total effect as follows:

ATE 20 = CTE Z ;20(m) ·
1

3
+CTE Z ;20( f ) ·

2

3
= 11 ·

1

3
+5 ·

2

3
= 7.



Chapter 6

Unbiasedness and Identification of Causal Effects

In chapter 4, we introduced the concepts of a causality space, a potential confounder, a co-

variate, a global potential confounder, and a true outcome variable. In chapter 5, we turned

to the concepts of a true total effect variable, a causal average total effect, a causal condi-

tional total effect variable, and a causal conditional total effect. All these parameters and

variables are of a theoretical nature. It is not evident how they can be computed (identi-

fied) from parameters of the joint distribution of observable random variables such as X ,

Y , and a (possibly multivariate) covariate Z , that is, from those parameters that can be

estimated in a data sample.

In this chapter we introduce and study unbiasedness of various conditional expecta-

tion values, conditional expectations, prima facie effects, and prima facie effect functions.

In particular, we study how these terms can be used to identify the corresponding causal

effects and effect functions by estimable parameters and functions. Hence, this chapter

provides the link between causal effects and causal effect functions on one side and pa-

rameters and functions that can be estimated on the other side. The unbiasedness condi-

tions are the first and logically weakest kind of causality conditions, which, together with

the structural components listed in a causality space, distinguish causal stochastic depen-

dencies from ordinary stochastic dependencies.

We start defining unbiasedness of the conditional expectation values E (Y |X=x), un-

biasedness of the conditional expectation E (Y |X ), and unbiasedness of the correspond-

ing prima facie effects, that is, of the differences E (Y |X=x)−E (Y |X=x ′). We also treat

a first way to identify the causal average total effect ATE xx ′. Then we turn to unbi-

asedness of a conditional expectation value E (Y |X=x , Z=z), unbiasedness of the con-

ditional expectations E X=x(Y |Z ) and E (Y |X , Z ), as well as the prima facie effect vari-

ables E X=x(Y |Z )−E X =x ′

(Y |Z ). We also show how to identify the causal average total effect

ATE xx ′ as well as a causal conditional total effect function CTEV ; xx ′ and a causal condi-

tional total effect CTEV ;xx ′(v) given a value v of a random variable V . Next, we illustrate

these concepts by some numerical examples. Finally, we show that unbiasedness can be

accidental, presenting an example in which the conditional expectation values E (Y |X=x)

are unbiased, whereas the conditional expectation values E (Y |X=x, Z=z) are not.

In this chapter we often will refer to the following notation and assumptions.

Notation and Assumptions 6.1

Let
(

(Ω,A,P ), (Ft , t ∈T ), X ,Y
)

be a causality space, let X be discrete, let P (X=x) > 0

for all values in the image X (Ω) = {0,1, . . . , J }, and let Y be real-valued with E (Y 2) <∞.

Furthermore, let CX be a global potential confounder of X and let τx = E X=x(Y |CX ) and

τx ′= E X =x ′

(Y |CX ) denote true outcome variables of Y given x, x ′∈ X (Ω), respectively.
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6.1 Unbiasedness of E (Y |X ) and its Values E (Y |X=x)

In the section 5.2 we defined the average total effect by ATE xx ′ = E (δxx ′). Inserting the

definition of the true total effect variable δxx ′ = τx −τx ′ and the definition of true outcome

variables yields

ATE xx ′ = E (δxx ′) = E (τx −τx ′)

= E (τx)−E (τx ′) = E
(

E X=x(Y |CX )
)

−E
(

E X =x ′

(Y |CX )
)

.
(6.1)

According to Theorem 3.84 (e) the expectation E
(

E X=x(Y |CX )
)

appearing on the right-

hand side of this equation is a uniquely defined number if τx = E X=x(Y |CX ) is P-unique.

This motivates the following definition.

Definition 6.2 (Unbiasedness of E (Y |X=x) and E (Y |X ))

Let the Assumptions 6.1 hold.

(i) We call the conditional expectation value E (Y |X=x) unbiased if τx is P-unique

and

E (Y |X=x) = E (τx). (6.2)

(ii) We call the conditional expectation E (Y |X ) unbiased if, for all x ∈X (Ω), the

conditional expectation values E (Y |X=x) are unbiased.

Remark 6.3 (An Equivalent Condition of P-Uniqueness) According to Theorem 3.84 (b),

P-uniqueness of τx is equivalent to

P (X=x |CX ) >
P

0. (6.3)

Hence, we may replace the assumption of P-uniqueness of τx by P (X=x |CX ) >
P

0, which

is a shortcut for

P
({

ω ∈Ω: P (X=x |CX )(ω) > 0
})

= 1. (6.4)

⊳

Remark 6.4 (Unbiased With Respect to F1) Note that Definition 6.2 refers to total effects

true outcome variables (see Rem. 4.20). Considering these true outcome variables τx =

E X=x(Y |CX ) we condition on a global potential confounder CX , and with it on its gener-

ated σ-algebra σ(CX ) (see SN-Def. 10.2 and SN-Rem. 10.3), which is identical to F1 [see

Def. 4.4 (ii)]. Therefore, if it is not clear that we are talking about unbiasedness with respect

to total effects, then we may say unbiased with respect to F1, because for direct and indi-

rect effects we would consider other true outcome variables, which would be defined by

conditioning on another σ-algebra of potential confounders. Such a σ-algebra would also

include those events that are in between X and the intermediate variable considered. ⊳

Example 6.5 (No Treatment for Joe) In the example displayed in Table 3.2, the person

variable U plays the role of CX , and F1 =σ(U ). Furthermore, the co-domain Ω
′
X of X is any

subset of R containing the elements 0 and 1. The values of the two true outcome variables

τ0 and τ1 are displayed in the table. Whereas τ0 is the only element in the set E
X =0(Y |U )
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(which implies that τ0 is P-unique), τ1 is not the only element in the set E
X =1(Y |U ), be-

cause the random variable τ∗
1 displayed in the last column of the table is also an ele-

ment of E
X =1(Y |U ). Furthermore, τ1 and τ∗

1 are not identical with probability 1. Instead,

τ1(ω) 6= τ∗
1 (ω) for ω ∈ {ω1, . . . ,ω4} and P ({ω1, . . .ω4})= .5. Hence, in this example, the condi-

tional expectation value E (Y |X =0) is unbiased, whereas E (Y |X =1) as well as the condi-

tional expectation E (Y |X ) are not unbiased, because τ1 is not P-unique. ⊳

Remark 6.6 (Unbiased Estimators and Unbiased Parameters) Unbiasedness in statistics

usually refers to estimators of a parameter. However, if the expectation of the estimator is

not identical to the parameter to be estimated, then the expectation of the estimator itself

is also biased if used for drawing inferences on the original parameter. In particular, al-

though the sample mean is an unbiased estimator of E (Y |X=x), it can be a biased estima-

tor of E (τx), the parameter of interest. Hence, the conditional expectation value E (Y |X=x)

can also be biased in the sense that it is not identical to E (τx), and this is the basic idea of

Definition 6.2. ⊳

Remark 6.7 (Expectations with Respect to the Measure P X=x ) If P (X=x) > 0, then

E (Y |X=x) = E X=x(Y ) (6.5)

[see Eqs. (3.23), (3.27), or SN-Cor. 9.5]. Hence, if P (X=x) > 0, then the conditional expecta-

tion value E (Y |X=x) is unbiased if and only if the expectation E X=x (Y ) of Y with respect to

the conditional probability measure P X=x is unbiased, that is, if and only if τx is P-unique

and

E X=x(Y ) = E (τx). (6.6)

⊳

Remark 6.8 (Identification of E (τx)) Although trivial, let us emphasize that unbiasedness

of E (Y |X=x) is important because it gives us access to the expectation of the true out-

come variable τx . If E (Y |X=x) is unbiased, then, according to Equation (6.2), an estimate

of E (Y |X=x) is also an estimate of E (τx). ⊳

In the following theorem, we present three conditions that are equivalent to unbiased-

ness of E (Y |X=x).

Theorem 6.9 (Equivalent Conditions of Unbiasedness of E (Y |X=x))

Let the assumptions 6.1 hold and assume that τx is P-unique. Then each of the following

three equations is equivalent to unbiasedness of E (Y |X=x).

E X=x(τx) = E (τx). (6.7)

E (τx |1X=x ) = E (τx). (6.8)

E X=x(εx ) = E (εx ) = 0, where εx := τx − E X=x(Y ). (6.9)

(Proof p. 146)

In the subsequent sections and chapters we will often refer to Equation (6.8) stating

mean-independence of τx from the indicator 1X=x . Remember, the shortcut for this equa-

tion is τx ⊢ 1X=x . That is,
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τx ⊢ 1X=x ⇔ E (τx |1X=x ) = E (τx) (6.10)

[see Proposition (3.55)]. Hence, we may read τx ⊢ 1X=x as τx is mean-independent of 1X=x .

Remark 6.10 (Sufficient Conditions of Unbiasedness) In Corollary 7.27, it will be shown

that E X=x(τx) = E (τx) as well as τx ⊢ 1X=x follow from independence of τx and 1X=x , which

itself follows from CX ⊥⊥1X=x , that is from independence of a global potential confounder

CX of X and the indicator 1X=x (see Theorem 8.11). Note that CX ⊥⊥1X=x can be created

by randomized assignment of the observational unit to treatment x (see the example pre-

sented in Table 6.2). In the subsequent chapters we will also treat other sufficient condi-

tions of unbiasedness of E (Y |X=x). ⊳

In empirical applications in which there is no randomized assignment of the observa-

tional unit to one of the treatment conditions, unbiasedness of E (Y |X=x) is not very likely.

However, if we additionally consider a (uni- or multivariate) covariate Z of X and the con-

ditional expectation values E (Y |X=x , Z=z), then unbiasedness of these parameters and

of the conditional expectation E (Y |X , Z ) (see section 6.2) is much more realistic, even be-

yond experiments with randomized assignment of the unit to a treatment condition, that

is, even in quasi-experiments.

6.2 Unbiasedness of E (Y |X , Z ) and its Values E (Y |X=x , Z =z)

Now we extend the concept of unbiasedness to conditioning on a on a (possibly multivari-

ate) random variable Z . Note that Z := (Z1, . . . , Zm ) is a random variable on (Ω,A,P ) if and

only if Z1, . . . , Zm are random variables on (Ω,A,P ) (see SN-Th. 2.38 and SN-Def. 5.1).

Reading the following definition, note that

P X=x (Z=z) > 0 ⇔ P Z=z (X=x) > 0 ⇔ P (X=x, Z=z) > 0 (6.11)

and that P (X=x, Z=z) > 0 implies

E X=x(Y |Z=z) = E Z=z (Y |X=x) = E (Y |X=x, Z=z) . (6.12)

Also remember that P Z=z -uniqueness of τx means

P Z=z
({

ω ∈Ω: τx(ω) = τ∗x (ω)
})

= 1, ∀τx ,τ∗x ∈ E
X=x(Y |CX ), (6.13)

and that this property follows from P-uniqueness of τx [see SN-Box 14.1 (v)]. Also note that

P Z=z -uniqueness of τx is equivalent to P (X=x |CX ) >
P Z =z

0, which is a shortcut for

P Z=z
({

ω ∈Ω: P (X=x |CX ) > 0
})

= 1. (6.14)

Definition 6.11 (Unbiasedness of E (Y |X=x , Z=z), E X=x(Y |Z ), and E (Y |X , Z ))

Let the Assumptions 6.1 hold and let Z be a random variable on (Ω,A,P ) with value

space (Ω′
Z ,A ′

Z ). Then

(i) E (Y |X=x, Z=z) is called unbiased if P (X=x, Z=z) > 0, τx is P Z=z -unique, and

E (Y |X=x , Z=z) = E (τx |Z=z). (6.15)
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(ii) E X=x(Y |Z ) is called unbiased if τx is P-unique and

E X=x(Y |Z ) =
P

E (τx |Z ). (6.16)

(iii) E (Y |X , Z ) is called unbiased if, for all values x ∈X (Ω), the conditional expec-

tations E X=x(Y |Z ) are unbiased.

Remark 6.12 (Reference to F1) Again, if there is ambivalence, then we may add the refer-

ence to F1 in order to clarify that we are talking about total effects. The background of this

note have been detailed already in Remark 6.4. ⊳

Remark 6.13 (Identification of E (τx |Z=z) and E (τx |Z )) According to Equation (6.15), if

E (Y |X=x, Z=z) is unbiased, then we can identify the (Z=z)-conditional expectation

value E (τx |Z=z) by E (Y |X=x, Z=z). Hence, an estimate of E (Y |X=x , Z=z) is also an esti-

mate of E (τx |Z=z) if E (Y |X=x , Z=z) is unbiased. Analogously, If E X=x(Y |Z ) is unbiased,

then, according to Equation (6.16), we can identify the Z -conditional expectation E (τx |Z )

by the Z -conditional expectation E X=x (Y |Z ) of Y with respect to the conditional probabil-

ity measure P X=x . Hence, an estimate of E X=x(Y |Z ) is also an estimate of E (τx |Z ) provided

that E X=x(Y |Z ) is unbiased. ⊳

Now we turn to some conditions that are equivalent to unbiasedness of a conditional

expectation E X=x(Y |Z ). The following lemma will be useful in the proof of the Theorem

6.15. Note that a crucial assumption in the following lemma is that Z is a covariate of X ,

which implies CX -measurability of Z .

Lemma 6.14 (A Decomposition of the True Outcome Variable)

Let the Assumptions 6.1 hold and let Z be a covariate of X with value space (Ω′
Z ,A ′

Z ).

Then

τx := E X=x(Y |CX ) =
P X=x

E X=x(Y |Z ) + εx (6.17)

with

εx =
P X=x

τx − E X=x(τx |Z ) (6.18)

and

E X=x(εx |Z ) =
P X=x

0. (6.19)

(Proof p. 148)

In the following theorem we present three conditions, each of which is equivalent to

unbiasedness of E X=x(Y |Z ). These conditions are also used in the proofs of sufficient con-

ditions of unbiasedness (see chs. 8 to ??).
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Theorem 6.15 (Equivalent Conditions of Unbiasedness of E X=x(Y |Z ))

Let the Assumptions 6.1 hold, let Z be a covariate of X with value space (Ω′
Z ,A ′

Z ), and

assume that τx is P-unique. Then each of the following three equations is equivalent to

E X=x(Y |Z ) being unbiased.

E X=x(τx |Z ) =
P

E (τx |Z ). (6.20)

E (τx |1X=x , Z ) =
P

E (τx |Z ). (6.21)

E (εx |Z ) =
P

0, where εx := τx − E X=x(Y | Z ). (6.22)

(Proof p. 148)

In the subsequent sections and chapters we will often refer to Equation (6.21) stating

Z -conditional mean-independence of τx from the indicator 1X=x . The shortcut for this

equation is τx ⊢ 1X=x |Z . That is,

τx ⊢ 1X=x | Z ⇔ E (τx |1X=x , Z ) =
P

E (τx |Z ) (6.23)

[see Prop. (3.56)]. Hence, we may read τx ⊢ 1X=x | Z as τx is Z-conditionally mean-indepen-

dent of 1X=x .

Remark 6.16 (Unbiasedness of a Conditional Expectation Value) If P (X=x, Z=z) > 0, then

E (Y |X=x, Z=z) = E X=x(Y |Z=z) (6.24)

[see Rem. 3.88 and SN-Eq. (14.35)]. If we additionally presume that Z is a covariate of X

and that τx is P Z=z -unique, then Equation (6.24) and Definition 6.11 (i) imply that the

(X=x, Z=z)-conditional expectation value E (Y |X=x , Z=z) of Y is unbiased if and only if

E X=x(Y |Z=z) = E (τx |Z=z). (6.25)

⊳

Theorem 6.17 (Unbiasedness of a Conditional Expectation Value)

Let the Assumptions 6.1 hold, let Z be a covariate of X with value space (Ω′
Z ,A ′

Z ), as-

sume P (X=x, Z=z) > 0, and that τx is P Z=z -unique. Then E (Y |X=x, Z=z) is unbiased

if and only if

E X=x(τx |Z=z) = E (τx |Z=z). (6.26)

(Proof p. 149)

Note that, under the assumptions of Theorem 6.17, Equation (6.26) is equivalent to

E (τx |X=x, Z=z) = E (τx |Z=z) (6.27)

(see Rem. 3.88).
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6.3 Unbiasedness of Prima Facie Effects

In the Definition 6.18 we introduce the concepts of unbiasedness of the prima facie effect

PFExx ′ := E (Y |X=x)−E (Y |X=x ′). (6.28)

For a covariate Z of X with value space (Ω′
Z ,A ′

Z ) we also extend unbiasedness to a Z -con-

ditional prima facie effect function PFEZ ;xx ′ : Ω′
Z →R satisfying

PFEZ ;xx ′(Z ) =
P

E X=x(Y |Z )−E X =x ′

(Y |Z ), (6.29)

where PFEZ ;xx ′ (Z ) denotes the composite function of Z and PFEZ ;xx ′ . The function PFE Z ; xx ′

assigns to each value z ∈Ω′
Z a (Z=z)-conditional prima facie effect of x compared to x ′.

For simplicity, we also call the composition PFEZ ;xx ′(Z ) a Z -conditional prima facie effect

variable. Finally, presuming P (X=x, Z=z), P (X=x ′, Z=z) > 0, we define the (Z=z)-condi-

tional prima facie effect

PFEZ ;xx ′ (z) := E (Y |X=x, Z=z)−E (Y |X=x ′, Z=z). (6.30)

Definition 6.18 (Unbiasedness of a Prima Facie Effect)

Let the Assumptions 6.1 hold.

(i) The prima facie effect PFExx ′ is called unbiased, if τx and τx ′ are P-unique, and

PFExx ′ = E (τx −τx ′). (6.31)

(ii) Additionally, let Z be a random variable on (Ω,A,P ) with value space (Ω′
Z ,A ′

Z ).

A Z-conditional prima facie effect function PFEZ ; xx ′ is called unbiased if τx and

τx ′ are P-unique, and

PFEZ ;xx ′ (Z ) =
P

E (τx −τx ′ |Z ). (6.32)

(iii) Finally, let z be a value of Z such that P (X=x, Z=z), P (X=x ′, Z=z) > 0. Then

PFEZ ;xx ′(z) is called unbiased, if τx and τx ′ are P Z=z -unique, and

PFEZ ; xx ′(z) = E (τx −τx ′ |Z=z). (6.33)

Note again that all these concepts of unbiasedness refer to total effects. If this is am-

biguous we may say ‘unbiased with respect to F1’, because for direct and indirect effects

we would consider other true outcome variables, conditioning on another σ-algebra of

potential confounders, which would also include those events that are in between X and

the intermediate variable considered.

Example 6.19 (Conditioning on {Z=z }) If we consider a random experiment in which we

sample a person u from a set ΩU of persons (the population), and if z represents a subpop-

ulation, that is, if z represents a subset of ΩU such as ‘males’, then PFEZ ;xx ′ (z) is identical

to the difference

E X=x(Y |Z=z)−E X =x ′

(Y |Z=z) = E (Y |X=x, Z=z)−E (Y |X=x ′, Z=z),
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Box 6.1 Unbiasedness

Let the Assumptions 6.1 hold and let Z be a random variable on (Ω,A,P) with value space

(Ω′
Z ,A ′

Z ). Then unbiasedness of various conditional expectations, their values, and their

differences, is defined as follows:

Unbiasedness of . . . is defined by . . .

E(Y |X=x ) τx is P-unique and satisfies E(Y |X=x ) = E(τx ).

E(Y |X ) For all x ∈X (Ω): E(Y |X=x ) is unbiased.

E(Y |X=x , Z=z) z is a value of Z such that P(X=x , Z=z) > 0, τx is P Z=z-unique

and satisfies E(Y |X=x , Z=z)= E(τx |Z=z).

E X=x(Y |Z ) τx is P-unique and satisfies E X=x(Y |Z ) =
P

E(τx |Z ).

E(Y |X , Z ) For all x ∈X (Ω): E X=x(Y |Z ) is unbiased.

PFExx ′ τx and τx ′ are P-unique and PFExx ′ = E(τx −τx ′ ).

PFE Z ;xx ′ (z) z is a value of Z satisfying P(X=x , Z=z), P(X =x ′, Z=z) > 0,

τx and τx ′ are P Z=z -unique and PFE Z ; xx ′ (z) = E(τx −τx ′ |Z=z).

PFE Z ;xx ′ , PFEZ ;xx ′ (Z ) τx and τx ′ are P-unique and PFEZ ;xx ′ (Z ) =
P

E(τx −τx ′ |Z ).

where we condition on the two values x and x ′of the treatment variable and the event

{Z=z} = {ω ∈ Ω : Z (ω)=z} that the person drawn is an element of the subpopulation rep-

resented by z. ⊳

Box 6.1 summarizes the definitions of unbiasedness of various conditional expecta-

tions, their values, and prima facie effects.

Remark 6.20 (Estimability of Conditional Expectations) While true outcome variables τx

and their values are not directly estimable in a data sample unless rather restrictive as-

sumptions are introduced, the conditional expectation values E (Y |X=x), E (Y |X=x, Z=z),

and the conditional expectations E X=x(Y |Z ) and E (Y |X , Z ) can be estimated under real-

istic assumptions, and the same is true for the conditional and unconditional prima facie

effects. As we shall see, this implies that causal average total effects and causal (Z=z)-

conditional total effects can be estimated as well, provided that we assume that the con-

ditional expectations E (Y |X ), E X=x(Y |Z ), and E (Y |X , Z ) mentioned above are unbiased

(see section 6.4 for details). ⊳

Remark 6.21 (Unbiasedness and Randomization) In chapter 8 we show that unbiased-

ness of the conditional expectations, their values, and the prima facie effects can be cre-

ated by randomized assignment of the observational unit to one of the treatment con-

ditions. Unbiasedness can also be strived for by covariate selection, that is, we may try

to select covariates Z1, . . . , Zm such that unbiasedness of the conditional expectations

E X=x(Y |Z ) holds for the m-variate covariate Z := (Z1, . . . , Zm) and all values x of X . ⊳

Remark 6.22 (Unbiasedness and Covariate Selection) Unfortunately, unbiasedness can-

not be used as a criterion for covariate selection. The reason is that it cannot be tested
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empirically, because the definitions involve the true outcome variables τx . These variables

even cannot be estimated unless very restrictive assumptions are introduced. This has

been discussed in some detail by Holland (1986) and has been called the “fundamental

problem of causal inference” (see also the preface). However, in chapters 8 to ?? we intro-

duce other causality conditions that can be tested empirically and that imply unbiased-

ness. ⊳

6.4 Identification of Causal Total Effects

In chapter 5 we introduced causal average total effects and causal conditional total effect

functions, which, in the first place, are of a purely theoretical nature. They just define what

we are interested in, for example, in studies evaluating the effects of a treatment, an in-

tervention, or an exposition. Now we study how causal total effects can be identified by

estimable parameters, and how the causal conditional total effect functions can be iden-

tified by estimable variables.

6.4.1 Identification of the Causal Average Total Effect

In Definition 5.8 we defined the causal average total effect

ATE xx ′ = E (τx −τx ′), (6.34)

presuming that τx and τx ′ are P-unique. In Definition 6.18 we defined unbiasedness of the

prima facie effect PFExx ′ by P-uniqueness of τx and τx ′ and

PFExx ′ = E (τx −τx ′). (6.35)

Hence, these two definitions immediately yield the following corollary.

Corollary 6.23 (Identifying the Causal Average Effect by PFExx ′)

Let the Assumptions 6.1 hold and assume that PFExx ′ is unbiased. Then

ATE xx ′ = PFExx ′ . (6.36)

Remark 6.24 (Complete Reaggregation) Looking at Equation (6.34) shows that we can

reaggregate the true total effect variable δxx ′ = τx −τx ′ . Note that this does not mean to

ignore the potential confounders of X , which, by definition, are measurable with respect

to the global potential confounder CX (see Def. 4.4). In general,

E (Y |X=x)−E (Y |X=x ′) 6= E (τx −τx ′) = E (τx)−E (τx ′).

However, if the prima facie effect PFExx ′ = E (Y |X=x)−E (Y |X=x ′) is unbiased, then both

sides of this inequality are identical. Considering the expectation E (τx −τx ′) we (com-

pletely) reaggregate the true total effect variable δxx ′ . That is, the true total effect variable is

coarsened to one single number, the expectation of the true total effect variable. With such

a reaggregation, we lose information. However, the resulting causal average total effect is

still unbiased. ⊳
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Remark 6.25 (Ignoring Potential Confounders of X ) In contrast to reaggregation, just con-

sidering the prima facie effect E (Y |X=x)−E (Y |X=x ′), and in this sense, ignoring poten-

tial confounders of X , may lead to a completely wrong conclusion about the causal av-

erage total effect of x compared to x ′ on Y , unless E (Y |X=x)−E (Y |X=x ′) is unbiased.

In Table 6.1 we present an example in which the effect of treatment 1 compared to treat-

ment 0 is reversed. While the causal average total effect, that is, the expectation of the

true total effect variable is E (δ10) = 10, the corresponding prima facie effect is PFE10 =

E (Y |X =1)−E (Y |X =0) = −5.857. Considering Box 6.2 and comparing Equations (i) and

(ii) to each other reveals why such a reversal of effects can occur. ⊳

According to the following theorem we can also identify the causal average total effect

ATE xx ′ if the prima facie effect PFExx ′ is not unbiased. It suffices to assume that the Z -

conditional prima facie effect variable

PFEZ ; xx ′(Z ) =
P

E X=x(Y |Z ) − E X =x ′

(Y |Z ) (6.37)

is unbiased. This theorem is the theoretical foundation for the analysis of causal average

total effects beyond the randomized experiment.

Theorem 6.26 (Identifying the Causal Average Total Effect by PFE Z ; xx ′)

Let the Assumptions 6.1 hold, let Z be a random variable on (Ω,A,P ) with value space

(Ω′
Z ,A ′

Z ), and assume that PFEZ ; xx ′ is unbiased. Then

ATE xx ′ = E
(

PFEZ ; xx ′(Z )
)

. (6.38)

(Proof p. 150)

Equation (6.38) reveals that we can reaggregate the prima facie effect function PFEZ ;xx ′

to obtain a single number. If PFEZ ; xx ′ is unbiased, then this does not mean to ignore the

potential confounders of X . Instead, we just reaggregate (coarsen) the causal conditional

total effects to obtain a single number, the causal average total effect ATE xx ′.

Remark 6.27 (Z -Adjusted Conditional Expectation Value of Y ) Inserting Equation (6.37)

into the right-hand side of Equation (6.37) yields

ATE xx ′ = E
(

E X=x(Y |Z )
)

− E
(

E X =x ′

(Y |Z )
)

. (6.39)

The first term on the right-hand side of this equation is called the Z -adjusted (X=x)-con-

ditional expectation value of Y , and the second term the Z -adjusted (X=x ′)-conditional

expectation value of Y . ⊳

6.4.2 Identification of a Causal Conditional Total Effect Function

In Definition 5.17 we introduced the causal conditional total effect function CTEV ; xx ′ and

its composite CTEV ;xx ′(V ) by

CTE V ; xx ′(V ) =
P

E (τx −τx ′ |V ), (6.40)

presuming that τx and τx ′ are P-unique. In Definition 6.18 (ii) we defined unbiasedness of

the prima facie effect function PFEZ ;xx ′ by
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PFEZ ;xx ′ (Z ) =
P

E (τx −τx ′ |Z ), (6.41)

again presuming P-uniqueness of τx and τx ′ . Hence, for V =Z , these two definitions im-

mediately imply the following corollary, according to which a conditional prima facie ef-

fect function PFEZ ;xx ′ is a causal conditional total effect function CTE Z ; xx ′, if PFEZ ; xx ′ is

unbiased.

Corollary 6.28 (Identifying the Causal Z -Conditional Effect Function by PFE Z ;xx ′)

Let the Assumptions 6.1 hold, let Z be a random variable on (Ω,A,P ) with value space

(Ω′
Z ,A ′

Z ), and assume that PFEZ ; xx ′ is unbiased. Then

CTE Z ; xx ′(Z ) =
P

PFEZ ; xx ′(Z ) =
P

E X=x(Y |Z ) − E X =x ′

(Y |Z ) . (6.42)

Remark 6.29 (A Measurability Assumption for V ) According to Theorem 6.26, the expec-

tation of an unbiased prima facie effect variable PFEZ ; xx ′(Z ) is identical to the causal av-

erage total effect ATE xx ′. In Theorem 6.30 we extend this result to a causal V -conditional

total effect variable CTE V ; xx ′(V ). In this theorem we do not only assume E X=x(Y |Z ) and

E X =x ′

(Y |Z ), the two subtrahends of PFEZ ;xx ′ (Z ), to be unbiased, but also that σ(V ) ⊂

σ(1X=x , Z ) and σ(V ) ⊂σ(1X =x ′ , Z ). This second assumption is satisfied, for example, if V is

Z -measurable, or for V =X and X is dichotomous such that 1X =x ′ = 1−1X=x . ⊳

Theorem 6.30 (Identifying a Causal V-Conditional Total Effect Function via PFE Z ;xx ′)

Let the Assumptions 6.1 hold, let Z be a random variable on (Ω,A,P ) with value space

(Ω′
Z ,A ′

Z ), let V be a random variable on (Ω,A,P ) with value space (Ω′
V ,A ′

V ) such that

σ(V ) ⊂ σ(1X=x , Z ), σ(V ) ⊂ σ(1X =x ′ , Z ), and assume that E X=x(Y |Z ) and E X =x ′

(Y |Z )

are unbiased. Then

CTEV ; xx ′(V ) =
P

E
(

PFEZ ; xx ′(Z )
∣

∣V
)

(6.43)

=
P

E
(

E X=x(Y |Z )
∣

∣V
)

− E
(

E X =x ′

(Y |Z )
∣

∣V
)

. (6.44)

(Proof p. 150)

Remark 6.31 (Generalizing Identification of a Causal V-Conditional Total Effect Function)

Under slightly more restrictive assumptions, we can extend reaggregation of PFEZ ; xx ′(Z )

to conditioning on an (X , Z )-measurable random variable V . Instead of unbiasedness of

E X=x(Y |Z ) and E X =x ′

(Y |Z ), in Theorem 6.32 we assume

E (τx |X , Z ) =
P

E (τx |Z ) and E (τx ′ |X , Z ) =
P

E (τx ′ |Z ) . (6.45)

If X is dichotomous, then this assumption is equivalent to

E (τx |1X=x , Z ) =
P

E (τx |Z ) and E (τx ′ |1X =x ′ , Z ) =
P

E (τx ′ |Z ), (6.46)

because, in this case, σ(X , Z ) = σ(1X=x , Z ) = σ(1X =x ′ , Z ) and Proposition (6.46) is equiva-

lent to unbiasedness of E X=x(Y |Z ) and E X =x ′

(Y |Z ) (see Th. 6.15). If X can take on more

than two values, each with a positive probability, then Proposition (6.45) implies unbi-

asedness of E X=x(Y |Z ) and E X =x ′

(Y |Z ), but it is not equivalent to unbiasedness of these

two conditional expectations. (For more details see ch. 7, in particular Table 7.6). ⊳
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Theorem 6.32 (Identifying a Causal V-Conditional Total Effect Function via PFE Z ;xx ′)

Let the Assumptions 6.1 hold, let Z be a random variable on (Ω,A,P ) with value space

(Ω′
Z ,A ′

Z ), and let V be a random variable on (Ω,A,P ) with value space (Ω′
V ,A ′

V ) such

that σ(V ) ⊂σ(X , Z ). Furthermore, assume that Proposition (6.45) holds. Then

CTEV ; xx ′(V ) =
P

E
(

PFEZ ; xx ′(Z )
∣

∣V
)

(6.47)

=
P

E
(

E X=x(Y |Z )
∣

∣V
)

− E
(

E X =x ′

(Y |Z )
∣

∣V
)

. (6.48)

(Proof p. 150)

Remark 6.33 (Identifying a Causal V-Conditional Total Effect Function) Although the as-

sumptions in Theorems 6.30 and 6.32 differ from each other if X has more than two values,

Equations (6.43) and (6.47) are identical. Note that CTE V ; xx ′(V ) is not necessarily identical

(almost surely) to

PFEV ;xx ′ (V ) =
P

E X=x(Y |V )−E X =x ′

(Y |V ),

which is obvious if we compare the right-hand side of this equation to the right-hand side

of Equation (6.48). Instead, CTE V ; xx ′(V ) =
P

PFEV ;xx ′ (V ) if PFEV ;xx ′ (V ) is unbiased, an as-

sumption that neither follows from the assumptions made in Theorem 6.30 nor from those

made in Theorem 6.32. Hence, Theorem 6.32 offers a way to identify CTE V ; xx ′(V ) even if

PFEV ; xx ′(V ) is biased. ⊳

6.4.3 Identification of a Causal Conditional Total Effect

The causal conditional total effect CTEV ;xx ′(v) has been defined by

CTE V ; xx ′(v) = E (τx −τx ′ |V =v), (6.49)

presuming P (X=x,V =v ), P (X=x ′,V =v) > 0 and that τx and τx ′ are PV =v-unique [see Def.

5.17 (i)]. Furthermore, unbiasedness of the conditional prima facie effect PFEZ ;xx ′ (z) has

been defined by

PFEZ ; xx ′(z) = E (τx −τx ′ |Z=z), (6.50)

assuming that Z is a covariate of X , and P Z=z -uniqueness of τx and τx ′ [see Def. 6.18 (iii)].

For V =Z , these two definitions immediately imply the following corollary.

Corollary 6.34 (Identifying the Causal (Z=z)-Conditional Total Effect by PFE Z ; xx ′(z))

Let the Assumptions 6.1 hold, let Z be a random variable on (Ω,A,P ) with value space

(Ω′
Z ,A ′

Z ), and assume that P (X=x, Z=z), P (X=x ′, Z=z) > 0. If PFEZ ;xx ′ (z) is unbiased,

then

CTE Z ; xx ′(z) = PFEZ ; xx ′(z) = E X=x(Y |Z=z)−E X =x ′

(Y |Z=z) . (6.51)

The assumption that PFEZ ; xx ′(z) is unbiased comprises the assumption that τx and τx ′

are P Z=z -unique. This assumption has already been explained in more detail in Remarks

5.14 and 5.16.
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According to SN-Definition 10.33, Theorem 6.30 and Theorem 6.32 immediately imply

the following corollary about the identification of the causal (V =v )-conditional total effect

CTEV ;xx ′(v). According to SN-Remark 10.35, CTEV ; xx ′(v) is a uniquely defined number.

Corollary 6.35 (Identifying the Causal (V =v)-Conditional Total Effect via PFE Z ; xx ′)

If the Assumptions of Theorem 6.30 or of Theorem 6.32 hold and P (X=x,V =v ) > 0,

P (X=x ′,V =v) > 0, then

CTEV ;xx ′(v) = E
(

PFEZ ; xx ′(Z )
∣

∣V =v
)

(6.52)

= E
(

E X=x(Y |Z )
∣

∣V =v
)

−E
(

E X =x ′

(Y |Z )
∣

∣V =v
)

. (6.53)

Remark 6.36 (Unbiasedness of PFE Z ; xx ′(z) vs. Unbiasedness of PFEV ;xx ′ (v)) Again, note

that CTEV ;xx ′(v) is not necessarily identical to

PFEV ; xx ′(v) = E X=x(Y |V =v)−E X =x ′

(Y |V =v ) .

Comparing the right-hand side of this equation to the right-hand side of Equation (6.53)

reveals the difference. However, CTEV ;xx ′(v)= PFEV ;xx ′ (v), if PFEV ;xx ′ (v) is unbiased. Note

that unbiasedness of PFEV ;xx ′(v) is not implied by the assumptions made in Corollary 6.35.

Hence, Corollary 6.35 offers a way to identify CTEV ;xx ′(v) even if PFEV ; xx ′(v) is biased.

The crucial assumption in Theorem 6.30 is that PFEZ ; xx ′(z) is unbiased. Similarly, the cru-

cial assumption in Theorem 6.32 is that Proposition (6.45) holds, which is an assumption

about Z , not about V . ⊳

6.5 Three Examples

Tables 6.1 to 6.3 show parameters pertaining to fictive random experiments such as the

single-unit trials described in chapter 2. Among these parameters are the individual ex-

pectation values E (Y |X=x,U=u) given the treatment conditions and the individual treat-

ment probabilities P (X=1 |U=u). The parameters presented in the tables can be used to

generate sample data that would result if the random experiments to which the tables refer

were conducted n times. 1

6.5.1 Commonalities of all Examples

For simplicity, we consider single-unit trials in which no fallible covariate is observed and

in which there is neither a second treatment variable nor any other variable that is simul-

taneous to the treatment variable. In this case, the set

Ω = Ω1 ×Ω2 ×Ω3 = ΩU ×ΩX ×R

1 Although the focus of this book is on theory and not on data analysis, we also provide sample data for each table

on the home page of this book: www.causal-effects.de. These and other examples of this type as well as a data

sample generated by these examples can easily be created with the PC-program CausalEffectsXplorer that is also

provided on www.causal-effects.de, together with an extensive help file providing the most important concepts

and formulas.
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suffices to describe the set of possible outcomes of the random experiment, where ΩU =

{u1, . . . ,u6} and ΩX = {treatment,control}. Furthermore, we consider the product σ-algebra

A =P (ΩU)⊗P (ΩX)⊗B, where B denotes the Borelσ-algebra on R (see SN-section 1.2.3).

The probability measure P on (Ω,A ) is only partly known.

Remark 6.37 (σ-Algebra of Potential Confounders) In all examples, we consider the pro-

jection U : Ω→ΩU (see SN-section 2.3.5) with value space
(

ΩU,P (ΩU)
)

, that is, the person

variable. Furthermore, we consider the treatment variable X : Ω → Ω
′
X = {0,1} with value

space
(

Ω
′
X ,P (Ω′

X )
)

and the real-valued outcome variable Y . Finally, the treatment vari-

able X takes on the value 1 for treatment and 0 for control. According to Definition 4.4, the

filtration (Ft , t ∈T ) consists of three σ-algebras:

F1 := σ(h1), F2 := σ(h1,h2), F3 := σ(h1,h2,h3),

where ht : Ω → Ωt , t ∈ T = {1,2,3}, denote the projections specified in Definition 4.4. In

such a simple experiment, h1 = U and therefore, F1 = σ(U ), that is, the σ-algebra F1 of

potential confounders of X is identical to the σ-algebra generated by the observational-

unit variable U . Therefore, U is a global potential confounder of X . ⊳

Remark 6.38 (True Outcome Variables) In all examples of this chapter, P (X=x,U=u) > 0

for all pairs (x,u) of values of X and U . Therefore

τx := E X=x(Y |CX ) = E X=x(Y |U ), x ∈ {0,1}. (6.54)

According to Equation (4.10), the true outcome variable τx can also be written as a function

of the observational-unit variable U . More specifically, it can be written as the composition

of U and the U -measurable function gx : ΩU →R defined by

gx (u) = E (Y |X=x ,U=u), for all u ∈ΩU. (6.55)

Hence, τx = gx (U ) is the composition of U and gx , that is,

∀ω ∈ Ω: τx (ω) = gx

(

U (ω)
)

= gx (u), if ω ∈ {U=u}. (6.56)

This implies that the values of the conditional expectation E X=x(Y |U ) are identical to the

conditional expectation values E (Y |X=x,U=u) [see Eq. (4.9)]. ⊳

Remark 6.39 (Individual Treatment Probabilities) In all examples of this chapter,

P (X=1 |CX ) = P (X=1 |U ). (6.57)

Note that, by definition, P (X=1 |CX ) = E (X |CX ) and P (X=1 |U ) = E (X |U ) (see Rem. 3.58),

provided that X is dichotomous with values 0 and 1. In all examples of this chapter, this

CX -conditional treatment probability is uniquely defined and it is identical to the U -con-

ditional treatment probability P (X=1 |U ), whose values are denoted by P (X=1 |U=u) and

also called the individual treatment probabilities. ⊳



6.5 Three Examples 137

Box 6.2 Conditional expectation values in the three examples

Let x ∈X (Ω) denote a value of the treatment variable X , let U denote the observational-unit

variable in the examples presented in Tables 6.1 to 6.3, let P(X=x ,U=u) > 0, for all values u of

U , let F1 =σ(U ), and let τx = E X=x(Y |U ). Then:

E(Y |X=x ) = E(τx |X=x ) =
∑

u
E(Y |X=x ,U=u) ·P(U=u |X=x), (i)

whereas

E(τx ) =
∑

u
E(Y |X=x ,U=u) ·P(U=u). (ii)

Additionally assume that Z is measurable with respect to U . Then P(X=x , Z=z) > 0 and

E(Y |X=x , Z=z) = E(τx |X=x , Z=z) =
∑

u
E(Y |X=x ,U=u) ·P(U=u |X=x , Z=z), (iii)

whereas

E(τx |Z=z) =
∑

u
E(Y |X=x ,U=u) ·P(U=u |Z=z). (iv)

6.5.2 Description of the Examples

In the first example (see Table 6.1), the treatment probabilities are different for each and

every unit, and they strongly depend on the individual expectation values of the out-

comes under control, that is, they depend on the true outcome variable τ0 and also

on τ1. The (X=x)-conditional expectation values E (Y |X =1) and E (Y |X =0) are biased.

In fact, the prima facie effect PFE10 is negative, whereas the causal average total effect

ATE 10 is positive. The (X=x, Z=z)-conditional expectation values E (Y |X =1, Z=z) and

E (Y |X =0, Z=z) are biased as well. Although the causal (Z=z)-conditional total effects

and the causal average total effect are defined (and can be computed from the fundamen-

tal parameters displayed in the upper left part of the table), they cannot be estimated from

empirically estimable parameters such as the conditional expectation values E (Y |X =1)

and E (Y |X =0) or E (Y |X =1, Z=z) and E (Y |X =0, Z=z).

In the second example (see Table 6.2), the treatment probabilities are the same for all

units, that is, X and U are independent, which has many implications that are studied in

detail in chapter 8. Among these implications are that the conditional expectation E (Y |X )

and its values E (Y |X=x) as well as the conditional expectation E (Y |X , Z ) and its values

E (Y |X=x, Z=z) are unbiased.

In the third example (see Table 6.3), the treatment probabilities are different between

males and females. Furthermore, these two subpopulations (sets of units) also differ in the

(Z=z)-conditional expectation values of the true outcome variable τ0, that is, E (τ0 |Z=m)

6= E (τ0 |Z=f ). Given a value z of Z , however, the treatment probabilities do not differ from

each other. This implies that X and U are Z -conditionally independent, which in turn

implies that E (Y |X , Z ) is unbiased. Hence, in this example, the conditional expectation

values E (Y |X=x) are biased, whereas the conditional expectation values E (Y |X=x, Z=z)

are unbiased. Again, this is studied extensively in chapter 8.

Tables 6.1, 6.2, and 6.3 display the true outcomes and the individual treatment proba-

bilities. According to Equation (6.54), the true outcomes given x, that is, the values of τx ,
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Table 6.1. Self-selection of the unit to a treatment

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

S
e

x
Z

P
(U

=
u

)

P
(X

=
1
|U

)

τ 0
=

E
X
=

0
(Y

|U
)

τ 1
=

E
X
=

1
(Y

|U
)

δ
1

0
=
τ 1

−
τ 0

P
(U

=
u
|X

=
0

)

P
(U

=
u
|X

=
1

)

u1 m 1/6 6/7 68 81 13 1/21 6/21

u2 m 1/6 5/7 78 86 8 2/21 5/21

u3 m 1/6 4/7 88 100 12 3/21 4/21

u4 m 1/6 3/7 98 103 5 4/21 3/21

u5 f 1/6 2/7 106 114 8 5/21 2/21

u6 f 1/6 1/7 116 130 14 6/21 1/21

x = 0 x = 1

E(τx ): 92.333 102.333 ATE 10 = 10

E(Y |X=x ): 100.286 94.429 PFE10 =−5.857

E(τx |Z=m): 83 92.5 CTE Z ;10(m) = 9.5

E(Y |X=x , Z=m): 88 90.278 PFE Z ;10(m) = 2.278

E(τx |Z= f ): 111 122 CTE Z ;10( f ) = 11

E(Y |X=x , Z= f ): 111.455 119.333 PFE Z ;10( f ) = 7.879

are also the individual conditional expectation values E (Y |X=x,U=u), and, according to

Equation (6.57), the values of the conditional probability P (X=1 |CX ) = P (X=1 |U ), are

identical to the individual treatment probabilities P (X=1 |U=u). The tables also display

the values of the covariate Z := sex.

Some of the parameters appearing in these tables are called fundamental parame-

ters. Other parameters are called derived parameters because they can be computed from

the fundamental parameters. The individual total effects and the conditional probabil-

ities P (U=u |X=1) of observational unit u in treatment condition x, for instance, are

such derived parameters. Note, however, that one may also consider the probabilities

P (U=u |X=1) as fundamental and the treatment probabilities P (X=1 |U=u) as derived.

One can be computed as soon as the other one as well as the unconditional probabilities

P (U=u) and P (X=1) are known.

Looking at the fundamental parameters, the three tables differ only in the treatment

probabilities P (X=1 |U=u). All other entries, such as the true outcomes are the same.

However, if we look at the derived parameters, the three tables differ in important aspects.
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Table 6.2. Randomized assignment of the unit to a treatment

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

S
e

x
Z

P
(U

=
u

)

P
(X

=
1
|U

)

τ 0
=

E
X
=

0
(Y

|U
)

τ 1
=

E
X
=

1
(Y

|U
)

δ
1

0
=
τ 1

−
τ 0

P
(U

=
u
|X

=
0

)

P
(U

=
u
|X

=
1

)

u1 m 1/6 3/4 68 81 13 1/6 1/6

u2 m 1/6 3/4 78 86 8 1/6 1/6

u3 m 1/6 3/4 88 100 12 1/6 1/6

u4 m 1/6 3/4 98 103 5 1/6 1/6

u5 f 1/6 3/4 106 114 8 1/6 1/6

u6 f 1/6 3/4 116 130 14 1/6 1/6

x = 0 x = 1

E(τx ): 92.333 102.333 ATE 10 = 10

E(Y |X=x ): 92.333 102.333 PFE10 = 10

E(τx |Z=m): 83 92.5 CTE Z ;10(m) = 9.5

E(Y |X=x , Z=m): 83 92.5 PFEZ ;10(m) = 9.5

E(τx |Z= f ): 111 122 CTE Z ;10( f ) = 11

E(Y |X=x , Z= f ): 111 122 PFEZ ;10( f )= 11

6.5.3 (X=x)-Conditional Expectation Values

We start computing the (X=x)-conditional expectation values of Y and check whether or

not they are unbiased. In the first example (see Table 6.1), E (Y |X =0) = 100.286, whereas

E (τ0) = 92.333, that is, E (Y |X =0) is much larger than E (τ0). In contrast, E (Y |X =1) =

94.429, whereas E (τ1) = 102.333, that is, E (Y |X =1) is much smaller than E (τ0). Hence,

according to Definition 6.2 (i), the conditional expectation values E (Y |X=x) are biased,

and according Definition 6.2 (ii) this is also true for the conditional expectation E (Y |X ).

These expectations and conditional expectations are easy to compute from the param-

eters displayed in Table 6.1. The expectations E (τx) of the two true outcome variables are

obtained from taking the expectations of the true outcome variables using the uncon-

ditional probabilities P (U=u) as weights [see Box 6.2 (ii)]. In contrast, the correspond-

ing conditional expectations E (Y |X=x) are identical to the (X=x)-conditional expecta-

tion values of the true outcome variables, using as weights the conditional probabilities

P (U=u |X=x) [see Box 6.2 (i)].

If used for the evaluation of the total treatment effect, the (X=x)-conditional expecta-

tion values would lead to completely wrong conclusions. Not only is the direction of the

prima facie effect

E (Y |X =1) − E (Y |X =0) = −5.857
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Table 6.3. Conditionally randomized assignment of the unit to a treatment

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

S
e

x
Z

P
(U

=
u

)

P
(X

=
1
|U

)

τ 0
=

E
X
=

0
(Y

|U
)

τ 1
=

E
X
=

1
(Y

|U
)

δ
1

0
=
τ 1

−
τ 0

P
(U

=
u
|X

=
0

)

P
(U

=
u
|X

=
1

)

u1 m 1/6 3/4 68 81 13 1/10 3/14

u2 m 1/6 3/4 78 86 8 1/10 3/14

u3 m 1/6 3/4 88 100 12 1/10 3/14

u4 m 1/6 3/4 98 103 5 1/10 3/14

u5 f 1/6 1/4 106 114 8 3/10 1/14

u6 f 1/6 1/4 116 130 14 3/10 1/14

x = 0 x = 1

E(τx ): 92.333 102.333 ATE 10 = 10

E(Y |X=x ): 99.8 96.714 PFE10 =−3.086

E(τx |Z=m): 83 92.5 CTE Z ;10(m) = 9.5

E(Y |X=x , Z=m): 83 92.5 PFEZ ;10(m) = 9.5

E(τx |Z= f ): 111 122 CTE Z ;10( f ) = 11

E(Y |X=x , Z= f ): 111 122 PFEZ ;10( f )= 11

reversed as compared to the difference

E (τ1) − E (τ0) = 10,

but also as compared to each and every individual total effect (see the column τ1 −τ0 in Ta-

ble 6.1). All individual total effects are positive in this example, ranging between 5 and 14.

The bias in this example is due to strong inter-individual differences in the true outcomes

and to the fact that the individual treatment probabilities P (X=1 |U=u) heavily depend

on the true outcome variables, and, therefore, on the person variable U . For instance, unit

u1 has a true outcome under control of 68 and a treatment probability of 6/7, while unit

u6 has a true outcome under control of 116 and a treatment probability of 1/7. Such a con-

stellation is to be expected under self-selection of subjects to treatments, if the subjects

base their decisions to take treatment on the severity of their dysfunction before treatment

and if severity of their dysfunction after treatment is assessed as the outcome variable.

For the second example presented in Table 6.2, the situation is completely different.

Although the true outcome variables are the same as in Table 6.1, here, the conditional

expectation values E (Y |X=x) and the expectations E (τx) of the true outcome variables

are identical to each other, and this applies to both values 0 and 1 of X . Hence, in this

example, the conditional expectation values E (Y |X=x) are unbiased and can be used for

the evaluation of the treatment effect. This is due to the fact that the individual treatment
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probabilities do not depend on the units. This constellation occurs in a perfect random-

ized experiment, in which the experimenter decides that each subject is in treatment 1

with probability P (X=1) and in treatment 0 with probability 1−P (X=1). In our second ex-

ample, P (X=1) = 3/4. Note, however, that P (X=1) could be any number between 0 and 1,

exclusively. The only important point is that the individual treatment probabilities do not

differ between units, that is, P (X=1 |U=u) = P (X=1) for all units u ∈ΩU. Such a random-

ized assignment may be performed by drawing a ball from an urn with three black balls

and one white ball, adopting the rule that the subject is treated if a black ball is drawn.

In the third example (see Table 6.3), the conditional expectation values E (Y |X=x) are

biased again. Here, E (Y |X =0) = 99.8, whereas E (τ0) = 92.333. Again, E (Y |X =0) is much

larger than E (τ0). In contrast, E (Y |X =1) = 96.714, whereas E (τ1) = 102.333, that is, again

E (Y |X =1) is much smaller than E (τ0). Hence, in this example, the conditional expecta-

tion values E (Y |X=x) are strongly biased as well. However, in contrast to the first exam-

ple, the conditional expectation values E (Y |X=x, Z=z) are unbiased. In this example, the

treatment probability is 3/4 for all male units, while it is 1/4 for all female units. In this

example, the crucial point is that these probabilities are the same given a value z of the

covariate Z , that is, P (X=1 |Z=z,U=u) = P (X=1 |Z=z) for each unit u and both values z

of the covariate Z . This constellation holds in a perfect conditionally randomized experi-

ment in which we assign the sampled person to treatment with probability P (X=1 |Z=m)

if he is male and with probability P (X=1 |Z= f ) if the sampled person is female.

6.5.4 (X=x, Z =z)-Conditional Expectation Values

The conditional expectation values E (Y |X=x , Z=z), can be computed from the parame-

ters displayed in Table 6.3, applying Equation (iii) of Box 6.2. For this purpose we also need

the formula

P (U=u |X=x , Z=z) =
P (X=x |U=u) ·P (U=u, Z=z)

P (X=x |Z=z) ·P (Z=z)
, (6.58)

where

P (X=x |Z=z) =

∑

u

P (X=x |U=u) ·P (U=u, Z=z)

P (Z=z)
(6.59)

(see Exercise 6-10). Note that in the three examples P (X=x |U=u, Z=z) = P (X=x |U=u),

because in theses examples Z is U -measurable. Intuitively speaking, this means that Z

(the sex variable) does not contain any information that is not already contained in U (the

person variable). All terms on the right-hand side of Equation (6.58) are displayed in Table

6.3 or can be computed from the parameters displayed in this table. 2

Remark 6.40 (How Realistic are These Examples?) In empirical applications, assuming

F1 = σ(U ) is correct if (a) there is neither a second treatment variable nor another vari-

able that is simultaneous to X and if (b) no fallible covariate is observed. In this case, u

signifies the observational unit at the onset of treatment. If, however, a fallible covariate of

X is observed and u represents the observational unit at the time at which the covariate

is assessed, then there may very well be covariates that are not measurable with respect to

U , which affect the outcome variable Y and/or the treatment probability (see section 2.2).

2 An alternative is using the Causal Effects Xplorer provided at www.causal-effects.de, the home page of this

book.
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Hence, in this case, F1 = σ(U ) would not hold. In this case F1 would be the σ-algebra

generated by U and the fallible covariates to be assessed. ⊳

6.5.5 Conditional Total Effects

Comparing the conditional prima facie effects to the conditional total effects reveals that

the conditional prima facie effects are still biased with respect to total effects in the ran-

dom experiment presented in Table 6.1, but not in the examples displayed in Tables 6.2

and 6.3. Hence, in the first example, the conditional prima facie effect and the conditional

total effect for males are not identical, while they are identical in the second and third

examples, and the same applies to the corresponding prima facie effects for the females.

The bias of the conditional prima facie effects in the example presented in Table 6.1

is no surprise, because there are still individual differences within the two sex subpopu-

lations with respect to (a) the true outcomes under treatment and under control, as well

as (b) in the individual treatment probabilities P (X=1 |U=u). In contrast, in the second

and third examples, the individual treatment probabilities are all the same within each of

the two sex subpopulations.

6.5.6 Computing the Causal Average Total Effect From Conditional Total Effects

In all three examples, the average over the individual total effects is equal to the causal av-

erage total effect. However, only in the second and third examples, the expectation of the

sex-conditional prima facie effects is equal to the causal average total effect. [Remember,

the causal average total effect is defined as the expectation of true total effect variable δ10.]

Because this is no coincidence, this fact can be used for causal inference even in those

cases in which the unconditional prima facie effects are biased, provided that the condi-

tional prima facie effects are unbiased, that is, provided that PFEZ ;10(z) = E (δ10 |Z=z) for

each value z of the covariate Z .

Whether or not a causal average total effect is meaningful if there are different con-

ditional total effects — some of which may even be negative, while some are positive —

needs judgement in the specific applications considered. In some applications it might be

meaningful, in others it might not. Clearly, causal conditional total effects give more spe-

cific information than the causal average total effect. However, there are also advantages

of causal average total effects. First, they give a brief summary evaluation of a treatment

in a single number and different treatments may be compared to each other with respect

to this number. Second, in samples of limited size, causal average effects can be estimated

with more accuracy than the plenitude of causal conditional effects. And third, one should

keep in mind that even conditional effects are only causal average effects (see, e. g., Table

6.3). Hence, it is always a matter of substantive judgement how fine-grained the analysis

should be.

6.5.7 First Conclusions

The three examples show that conditioning on a covariate of X does not necessarily yield

unbiasedness given the values of the covariate. While there is no bias at all in the second

example, the third example shows that conditioning may remove bias. Comparing Exam-

ples 2 and 3 to each other shows that unbiasedness of the conditional expectation val-
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ues E (Y |X=x , Z=z) relies on specific conditions [here: P (X=1 |U ) = P (X=1 |Z ), that is,

equal individual treatment probabilities for units with an identical value z of Z ] in a sim-

ilar way as unbiasedness of E (Y |X=x). Such conditions are called causality conditions.

Note, however, that there are several of such causality conditions that do not involve the

U -conditional treatment probabilities (see ch. 9).

6.6 Example With Accidental Unbiasedness

Now we treat an example showing that there can be unbiasedness of the conditional ex-

pectation E (Y |X ) and at the same time bias of the conditional expectation E (Y |X , Z ). This

example shows that unbiasedness can be accidental, that is, there are cases in which unbi-

asedness is not a logical consequence of experimental design but an ‘accident of numbers’.

In chapter 8 we show that the experimental design technique of randomization always

induces unbiasedness of the conditional expectations E (Y |X ) and and E (Y |X , Z ) for all

covariates Z of X . 3

Conditional Expectation Values E (Y |X=x)

Table 6.4 displays the relevant parameters. We assume that it is a simple experiment so

that CX =U . In this specific example, the causal individual total effects are the same for all

units, namely 5, implying that the causal average total effect is also 5. The prima facie ef-

fect can be computed from the difference between the two conditional expectation values

E (Y |X =0) and E (Y |X =1). In this example, Box 6.2 (ii) yields

E (Y |X =0) =
∑

u

E (Y |X=0,U=u) ·P (U=u |X=0)

= 95 ·
3

16
+65 ·

1

16
+80 ·

7

16
+50 ·

5

16
= 72.5

and
E (Y |X =1) =

∑

u

E (Y |X=1,U=u) ·P (U=u |X=1)

= 100 ·
5

16
+70 ·

7

16
+85 ·

1

16
+55 ·

3

16
= 77.5.

Using Equation (ii) of Box 6.2, the corresponding expectations of the true outcome vari-

ables are
E (τ0) =

∑

u

E (Y |X=0,U=u) ·P (U=u)

= 95 ·
1

4
+65 ·

1

4
+80 ·

1

4
+50 ·

1

4
= 72.5

and
E (τ1) =

∑

u

E (Y |X=1,U=u) ·P (U=u)

= 100 ·
1

4
+70 ·

1

4
+85 ·

1

4
+55 ·

1

4
= 77.5.

3 Note that unbiasedness does not refer to a sample and that there is no (successful) randomization if there is

systematic attrition.
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Table 6.4. Accidental unbiasedness

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

S
e

x
Z

P
(U

=
u

)

P
(X

=
1
|U

)

τ 0
=

E
X
=

0
(Y

|U
)

τ 1
=

E
X
=

1
(Y

|U
)

δ
1

0
=
τ 1

−
τ 0

P
(U

=
u
|X

=
0

)

P
(U

=
u
|X

=
1

)

u1 m 1/4 5/8 95 100 5 3/16 5/16

u2 m 1/4 7/8 65 70 5 1/16 7/16

u3 f 1/4 1/8 80 85 5 7/16 1/16

u4 f 1/4 3/8 50 55 5 5/16 3/16

x = 0 x = 1

E(τx ): 72.5 77.5 ATE 10 = 5

E(Y |X=x ): 72.5 77.5 PFE10 = 5

E(τx |Z=m): 80 85 CTE Z ;10(m) = 5

E(Y |X=x , Z=m): 87.5 82.5 PFEZ ;10(m) =−5

E(τx |Z= f ): 65 70 CTE Z ;10( f )= 5

E(Y |X=x , Z= f ): 67.5 62.5 PFEZ ;10( f )=−5

Hence, the conditional expectation values E (Y |X =0) and E (Y |X =1) are unbiased, be-

cause they are identical to the corresponding expectations E (τ0) and E (τ1) of the true out-

come variables.

Conditional Expectation Values E (Y |X=x , Z =z )

The conditional expectation values E (Y |X=1, Z=z) and E (Y |X=0, Z=z) can be com-

puted from the parameters displayed in Table 6.4 using Box 6.2 (iii). This equation holds,

because, in this example, the random variable Z is measurable with respect to U (see SN-

Cor. 2.53). While the individual expected outcomes E (Y |X=x ,U=u) are displayed in Table

6.4, the conditional probabilities P (U=u |X=x, Z=z) have to be computed via Equation

(6.58) (see Exercise 6-10).

For Z=m (males), Equation (iii) of Box 6.2 yields

E (Y |X=0, Z=m) =
∑

u

E (Y |X =0,U=u) ·P (U=u |X =0, Z=m)

= 95 ·
9

12
+65 ·

3

12
+ 80 ·0+50 ·0 = 87.5

and
E (Y |X=1, Z=m) =

∑

u

E (Y |X =1,U=u) ·P (U=u |X =1, Z=m)

= 100 ·
5

12
+70 ·

7

12
+ 85 ·0 + 55 ·0 = 82.5.
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In contrast, using Equation (iv) of Box 6.2, the (Z=m)-conditional expectation values

of the true outcome variables are

E (τ0 |Z=m) =
∑

u

E (Y |X =0,U=u) ·P (U=u |Z=m)

= 95 ·
1

2
+65 ·

1

2
+ 80 ·0+50 ·0 = 80

and
E (τ1 |Z=m) =

∑

u

E (Y |X =1,U=u) ·P (U=u |Z=m)

= 100 ·
1

2
+70 ·

1

2
+ 85 ·0 + 55 ·0 = 85.

For Z= f (females), Equation (iii) of Box 6.2 yields

E (Y |X=0, Z= f ) =
∑

u

E (Y |X =0,U=u) ·P (U=u |X =0, Z= f )

= 95 ·0+65 ·0 + 80 ·7/12+50 ·5/12 = 67.5

and
E (Y |X=1, Z= f ) =

∑

u

E (Y |X =1,U=u) ·P (U=u |X =1, Z=m)

= 100 ·0+70 ·0 + 85 ·3/12+55 ·9/12 = 62.5.

In contrast, using Equation (iv) of Box 6.2, the (Z= f )-conditional expectation values of

the true outcome variables are

E (τ0 |Z= f ) =
∑

u

E (Y |X =0,U=u) ·P (U=u |Z= f )

= 95 ·0+65 ·0 + 80 ·
1

2
+50 ·

1

2
= 65

and
E (τ1 |Z= f ) =

∑

u

E (Y |X =1,U=u) ·P (U=u |Z= f )

= 100 ·0+70 ·0 + 85 ·
1

2
+ 55 ·

1

2
= 70.

Obviously, the conditional expectation values E (Y |X=x , Z=z) of the outcome variable Y

are not identical to the corresponding conditional expectation values E (τx |Z=z) of the

true outcome variables. Hence, the E (Y |X=x , Z=z) are biased although the conditional

expectation values E (Y |X=x) are unbiased.

Remark 6.41 (Methodological Implications) This example shows that unbiasedness of

the conditional expectation values E (Y |X=x) does not imply unbiasedness of the condi-

tional expectation values E (Y |X=x, Z=z), even if Z is a covariate of X . Hence, this exam-

ple shows that unbiasedness can be accidental, that is, it may be a fortunate coincidence,

an ‘accident of numbers’, not a logical consequence of experimental design. In chapter

8, however, we will show that experimental design techniques such as randomized as-

signment of the unit to one of the treatment conditions always leads to unbiasedness

and to (Z=z)-conditional unbiasedness if Z denotes a covariate of X . If Z is measur-

able with respect to the observational-unit variable, then this implies that randomiza-

tion always leads to unbiasedness of the conditional expectation values E (Y |X=x) and
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E (Y |X=x, Z=z). Note, however, that this beneficial implication of randomization only ap-

plies to unbiasedness with respect to total effects. Unfortunately, it does not apply to unbi-

asedness with respect to direct effects (see, e. g., Mayer, Thoemmes, Rose, Steyer, & West,

2014). ⊳

6.7 Summary and Conclusions

Unbiasedness is a first kind of causality conditions, which, together with the additional

structural components listed in a causality space, distinguishes a causally interpretable

conditional expectation from an ordinary conditional expectation. Several kinds of condi-

tional expectations and their values as well as their differences can be unbiased (see Box

6.1). The general insight of this chapter is that comparing conditional expectation values

(true means) does not allow to draw any conclusions on the effects of a treatment or in-

tervention unless they are unbiased. In terms of the metaphor discussed in the preface,

conditional expectation values and their differences are like the shadow of the invisible

man. The length of this shadow is identical to the height of the invisible man only under

very specific conditions. The unbiasedness conditions are the weakest assumptions under

which we can identify causal average total effects and causal conditional total effects. All

other causality conditions imply unbiasedness, some of which, in contrast to unbiased-

ness itself, are empirically testable, at least in the sense of falsifiability.

Hence, a first limitation of unbiasedness is that it cannot be tested empirically. Another

drawback of unbiasedness has been exemplified by the numerical example displayed in

Table 6.4. This example shows that, even if Z is a covariate of X , the conditional expecta-

tion values E (Y |X=x, Z=z) and the (Z=z)-conditional prima facie effects can be biased

even in cases in which the conditional expectation values E (Y |X=x) are unbiased (see also

Greenland & Robins, 1986). In contrast, the sufficient conditions of unbiasedness treated

in chapters 8 and 9 are less volatile, that is, they generalize to conditioning on a covari-

ate Z of X . Generalizability and empirical testability are two important virtues of these

alternative causality conditions.

6.8 Proofs

Proof of Theorem 6.9

Equation (6.7).

E(Y |X=x ) = E X=x(Y ) [(3.28)]

= E X=x
(

E X=x(Y |CX )
)

[SN-Box 10.2 (iv)]

= E X=x(τx ). [τx ∈ E
X=x(Y |CX )]

Hence, Equations (6.2) and (6.7) are equivalent to each other.

Equation (6.8). First, it is shown that Equation (6.8) implies Equation (6.7). Our assumptions in-

clude positive probabilities P(X=x) for all values x of X and this implies 0 < P(1X=x=1), P(1X=x=0)<

1. Hence, according to SN-Corollary 10.39 (i), Equation (6.8) is equivalent to

E(τx |1X=x=0) = E(τx |1X=x=1) = E(τx ). (6.60)
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Using this result yields

E(τx ) = E(τx |1X=x=1) [(6.60)]

= E(τx |X=x) [{1X=x=1} = {X=x }]

= E X=x(τx ). [(3.28)]

Now we show that Equation (6.8) follows from Equation (6.7).

E(τx )

= E(τx |1X=x=1) ·P(1X=x=1) + E(τx |1X=x=0) ·P(1X=x=0) [SN-(9.23)]

= E(τx ) ·P(1X=x=1) + E(τx |1X=x=0) ·P(1X=x=0) [(6.7)]

= E(τx ) ·
(

1−P(1X=x=0)
)

+ E(τx |1X=x=0) ·P(1X=x=0) [P(1X=x=1) = 1−P(1X=x=0)]

= E(τx ) +
(

E(τx |1X=x=0)−E(τx )
)

·P(1X=x=0).

Because we assume P(1X=x=0) > 0, this equation can only hold if E(τx |1X=x=0)= E(τx ). Because

Equation (6.7) implies E(τx |1X=x=1) = E(τx ), this yields Equation (6.60), which, according to Corol-

lary 10.39 (i) is equivalent to Equation (6.8).

Equation (6.9). The definition εx = τx −E X=x(Y ) yields

E X=x(εx ) = 0, (6.61)

which can be shown as follows:

E X=x(εx ) = E X=x
(

τx −E X=x(Y )
)

[(6.9)]

= E X=x(τx )−E X=x
(

E X=x(Y )
)

[SN-Box 6.1 (vi)]

= E X=x
(

E X=x(Y |CX )
)

−E X=x
(

E X=x(Y )
)

[τx ∈ E
X=x(Y |CX )]

= E X=x(Y )−E X=x(Y ) [SN-Box 10.2 (iv), SN-Box 6.1 (i)]

= 0.

According to Equation (6.9), τx =
P X=x

E X=x(Y )+εx . Hence,

E X=x(τx ) = E X=x
(

E X=x(Y )+ εx
)

[(6.9)]

= E X=x
(

E X=x(Y )
)

+E X=x
(

εx
)

[SN-Box 6.1 (vi)]

= E X=x(Y ) [SN-Box 6.1 (i), (6.61)]

= E X=x(Y )+E(εx ) [(6.9)]

= E
(

E X=x(Y )+ εx
)

[SN-Box 6.1 (i)]

= E(τx ). [(6.9)]

This proves that (6.9) implies (6.7).

Now we show that Equation (6.7) implies (6.9). According to (6.7), E X=x(τx ) = E(τx ). Hence,

0 = E(τx )−E(τx )

= E(τx )−E X=x(τx ) [(6.7)]

= E(τx )− E
(

E X=x(τx )
)

[SN-Box 6.1 (i)]

= E
(

τx −E X=x(τx )
)

[SN-Box 6.1 (vi)]

= E
(

τx −E X=x(Y )
)

[SN-Box 10.2 (iv)]

= E(εx ). [def. εx ]



148 6 Unbiasedness and Identification of Causal Effects

Proof of Lemma 6.14

εx =
P X=x

E X=x(Y |CX ) − E X=x(Y |Z ) [(6.17)]

=
P X=x

E X=x(Y |CX ) − E X=x
(

E X=x(Y |CX )
∣

∣ Z
)

[SN-Box 10.1 (v)]

=
P X=x

τx − E X=x(τx |Z ). [τx ∈ E
X=x(Y |CX )]

These equations show that εx is a residual with respect to a Z -conditional expectation of τx with

respect to the measure P X=x . According to SN-Box 11.1 (vi), this implies Equation (6.19).

Proof of Theorem 6.15

Because σ(Z ) ⊂ σ(CX ), according to SN-Box 14.1 (iv), P-uniqueness of τx = E X=x(Y |CX ) implies

that E X=x(Y |Z ) is P-unique as well. Therefore, according to SN-Corollary 14.48 (a) and (c), this is

equivalent to P(X=x |Z ) >
P

0, and to P-uniqueness of E X=x(τx |Z ), and E X=x(εx |Z ).

Equation (6.20). Because σ(Z ) ⊂σ(CX ), according to SN-Box 10.1 (v),

E X=x(τx |Z ) =
P X=x

E X=x
(

E X=x(Y |CX )
∣

∣ Z
)

=
P X=x

E X=x(Y |Z ) . (6.62)

Therefore, P-uniqueness of E X=x(Y |Z ) implies

E X=x(Y |Z ) =
P

E X=x(τx |Z ).

Hence, Equations (6.16) and (6.20) are equivalent to each other.

Equation (6.21). First, it is shown that Equation (6.21) implies Equation (6.20). According to SN-

Corollary 10.39 (i), Equation (6.21) is equivalent to

E(τx |1X=x=v , Z=z) = E(τx |Z=z), for P1X=x ,Z -a.a. (v, z) ∈ {0,1}×Ω
′
Z .

Because E(τx |1X=x=1, Z=z) = E(τx |X=x , Z=z), this implies

E(τx |X=x , Z=z) = E(τx |Z=z), for P1X=x ,Z -a.a. (1, z) ∈ {1}×Ω
′
Z ,

and according to SN-Corollary 14.58, this equation in turn implies

E X=x(τx |Z=z) = E(τx |Z=z), for PZ -a.a. z ∈Ω
′
Z .

According to SN-Corollary 10.39 (i), this is equivalent to Equation (6.20).

Now we show that Equation (6.21) follows from Equation (6.20).

E(τx |Z )

=
P

E1X=x=1(τx |Z ) ·11X=x=1 + E1X=x=0(τx |Z ) ·11X=x=0 [SN-Rem. 14.34]

=
P

E X=x(τx |Z ) ·11X=x=1 + E1X=x=0(τx |Z ) ·11X=x=0 [{X=x } = {1X=x=1}]

=
P

E(τx |Z ) ·11X=x=1 + E1X=x=0(τx |Z ) ·11X=x=0 [(6.20)]

=
P

E(τx |Z ) · (1−11X=x=0) + E1X=x=0(τx |Z ) ·11X=x=0

=
P

E(τx |Z ) +
(

E1X=x=0(τx |Z )−E(τx |Z )
)

·11X=x=0.

Because we assume P(1X=x = 0) > 0, this equation can only hold if
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E1X=x=0(τx |Z ) =
P

E(τx |Z ). (6.63)

Note, we assume E X=x(τx |Z ) =
P

E(τx |Z ). Furthermore, E X=x(τx |Z ) =
P

E1X=x=1(τx |Z ). Therefore,

E1X=x=1(τx |Z ) =
P

E(τx |Z ). (6.64)

Using (6.63) and (6.64), Corollary 10.39 (i) implies Equation (6.21).

Equation (6.22). Because σ(Z ) ⊂σ(CX ), according to SN-Box 14.1 (iv), assuming P-uniqueness of

τx implies P-uniqueness of the conditional expectations E X=x(Y |Z ), E X=x(τx |Z ), and E X=x(εx |Z ).

Because (the constant) 0 is Z -measurable, Equation (6.19) yields 0 ∈ E
X=x(εx |Z ). Hence, P-unique-

ness of E X=x(εx |Z ) implies

E X=x(εx |Z ) =
P

0. (6.65)

Therefore,

E X=x(τx |Z )

=
P

E X=x
(

E X=x(Y |Z )+εx

∣

∣ Z
)

[(6.22)]

=
P

E X=x
(

E X=x(Y |Z )
∣

∣ Z
)

+E X=x(εx | Z ) [SN-Box 10.2 (xv)]

=
P

E X=x(Y |Z ) [SN-Box 10.2 (vii), (6.65)]

=
P

E X=x(Y |Z ) + E(εx |Z ) [(6.22)]

=
P

E
(

E X=x(Y |Z )+εx

∣

∣ Z
)

[SN-Box 10.2 (vii), (xv)]

=
P

E(τx |Z ). [(6.22)]

This proves that Equation (6.20) implies (6.22).

Now we show that (6.22) implies (6.20).

0 =
P

E(εx |Z ) =
P

E
(

τx −E X=x(Y |Z )
∣

∣ Z
)

[(6.22)]

=
P

E(τx |Z )−E
(

E X=x(Y |Z )
∣

∣ Z
)

[SN-Box 10.2 (xv)]

=
P

E(τx |Z )−E
(

E X=x
(

E X=x(Y |CX )
∣

∣ Z
)

∣

∣

∣ Z
)

[SN-Box 10.2 (v)]

=
P

E(τx |Z )−E
(

E X=x(τx |Z )
∣

∣ Z
)

[τx := E X=x(Y |CX )]

=
P

E(τx |Z )−E X=x (τx |Z ) [SN-Box 10.2 (vii)]

However, the equation

0 =
P

E(τx |Z ) − E X=x(τx |Z )

can only hold if E X=x(τx |Z ) =
P

E(τx |Z ).

Proof of Theorem 6.17

If τx is P Z=z -unique, then it is also P X=x , Z=z -unique [see SN-Box 14.1 (v)]. According to SN-

Corollary 14.48 (e), this implies that the conditional expectation values on both sides of Equation

(6.26) are uniquely defined. Note that we assume that Z is a covariate of X . According to Definition

4.4 (i) and Remark 4.9 this implies that there is a CX -measurable mapping g : Ω′
CX

→Ω
′
Z such that

Z = g (CX ).

First we show that unbiasedness of E(Y |X=x , Z=z) implies Equation (6.26).

E X=x(τx |Z=z)
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= E X=x
(

E X=x(Y |CX )
∣

∣ Z=z
)

[τx = E X=x(Y |CX )]

= E X=x(Y |Z=z) [Z = g (CX ), SN-(10.39)]

= E(Y |X=x , Z=z) [(6.24)]

= E(τx |Z=z). [(6.15)]

Now we show that Equation (6.26) implies unbiasedness of E(Y |X=x , Z=z).

E(τx |Z=z)

= E X=x(τx |Z=z) [(6.26)]

= E X=x
(

E X=x(Y |CX )
∣

∣ Z=z
)

[τx = E X=x(Y |CX )]

= E X=x(Y |Z=z) [Z = g (CX ), SN-(10.39)]

= E(Y |X=x , Z=z) [(6.24)]

Proof of Theorem 6.26

E
(

PFE Z ;xx ′ (Z )
)

= E
(

E X=x(Y |Z )−E X =x ′

(Y |Z )
)

[(6.29)]

= E
(

E(τx −τx ′ |Z )
)

[(6.32)]

= E(τx −τx ′ ) [SN-Box 10.2 (iv)]

= ATE xx ′. [(5.6), (5.7)]

Proof of Theorem 6.30

E
(

PFEZ ;xx ′ (Z )
∣

∣V
)

=
P

E
(

E X=x(Y |Z )−E X =x ′

(Y |Z )
∣

∣V
)

[(6.29)]

=
P

E
(

E X=x(Y |Z )
∣

∣V
)

−E
(

E X =x ′

(Y |Z )
∣

∣V
)

[SN-Box 10.2 (xv)]

=
P

E
(

E(τx |Z )
∣

∣V
)

−E
(

E(τx ′ |Z )
∣

∣V
)

[(6.16)]

=
P

E
(

E(τx |1X=x , Z )
∣

∣V
)

−E
(

E(τx ′ |1X =x ′ , Z )
∣

∣V
)

[(6.21)]

=
P

E(τx |V )−E(τx ′ |V ) [σ(V ) ⊂σ(1X=x , Z ), σ(V )⊂σ(1X =x ′ , Z ), SN-Box 10.2 (v)]

=
P

E(τx −τx ′ |V ) [SN-Box 10.2 (xv)]

=
P

CTEV ;xx ′(V ). [(5.16)]

Proof of Theorem 6.32

The proof is analog to that of Theorem 6.30. In this proof, we only have to replace E(τx |1X=x , Z ) by

E(τx |X , Z ) and E(τx ′ |1X =x ′ , Z ) by E(τx ′ |X , Z ).
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6.9 Exercises

⊲ Exercise 6-1 What is the difference between the two terms E(τx ) and E(Y |X=x )?

⊲ Exercise 6-2 Compute the probabilities P(Z=z) occurring in Equation (6.59) for both values of Z

in the example displayed in Table 6.1.

⊲ Exercise 6-3 Which are the probabilities P(U=u1, Z=m) and P(U=u5, Z=m) occurring in Equa-

tion (6.59) for the example displayed in Table 6.1.

⊲ Exercise 6-4 Compute the two conditional probabilities P(U=u1 |Z=m) and P(U=u5 |Z=m) dis-

played in Table 6.1.

⊲ Exercise 6-5 Use SN-Theorem 4.25 to compute the probability P(X =1) for the example displayed

in Table 6.1.

⊲ Exercise 6-6 Compute the probabilities P(U=u |X =0) and P(U=u |X =1) for all six units in the

example of Table 6.1.

⊲ Exercise 6-7 Compute the conditional probabilities P(U=u |X =1, Z=m) occurring in Equation

(iii) of Box 6.2 in the example of Table 6.1.

⊲ Exercise 6-8 Compute the conditional expectation values E(Y |X = 0) and E(Y |X =1) for the ex-

ample in Table 6.3.

⊲ Exercise 6-9 Compute the conditional expectation values E(τ1 |Z= f ) and E(τ0 |Z= f ) displayed

in Table 6.1.

⊲ Exercise 6-10 Show that Equation (6.58) holds.

Solutions

⊲ Solution 6-1 The term E(τx ) denotes the expectation of a true outcome variable τx . It is these

true outcome variables that are of interest in the empirical sciences, because they describe how

the outcome variable Y depends on the values x of X controlling for all potential confounders of

X . This implies that the true outcome variables cannot be biased, and this also applies to their ex-

pectations E(τx ). In empirical applications, we often aim at estimating the expectations E(τx ) and

their differences. In contrast, the conditional expectation values E(Y |X=x ) of the outcomes are of-

ten not of interest in the empirical sciences, because they do not have a causal interpretation unless

E(Y |X=x ) = E(τx ).

⊲ Solution 6-2 The events that U takes on the value ui and that U takes on the value u j , i 6= j , are

disjoint. Therefore, we can use the theorem of total probability (see SN-Th. 4.25):

P(Z=m) = P(Z=m,U=u1 )+ . . .+P(Z=m ,U=u6)

=
1

6
+

1

6
+

1

6
+

1

6
+0+0 =

4

6
.

P(Z= f ) = P(Z= f ,U=u1)+ . . .+P(Z= f ,U=u6)

= 0+0+0+0+
1

6
+

1

6
=

2

6
.

⊲ Solution 6-3 P(U=u1, Z=m)= 1
6 and P(U=u5, Z=m) = 0.
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⊲ Solution 6-4

P(U=u1 |Z=m) =
P(U=u1, Z=m)

P(Z=m)
=

1/6

4/6
=

1

4
.

P(U=u5 |Z=m) =
P(U=u5, Z=m)

P(Z=m)
=

0

4/6
= 0.

⊲ Solution 6-5 The events {U=u1}, . . . , {U=u6} are disjoint and all these events have positive prob-

abilities. Hence we can apply the theorem of total probability (see SN-Th. 4.25):

P(X =1) = P(X =1 |U=u1) ·P(U=u1)+ . . .+P(X =1 |U=u6) ·P(U=u6)

=
6

7
·

1

6
+

5

7
·

1

6
+

4

7
·

1

6
+

3

7
·

1

6
+

2

7
·

1

6
+

1

7
·

1

6

=
21

42
=

1

2
.

⊲ Solution 6-6 We have to use the equation

P(U=u |X=x) =
P(X=x |U=u) ·P(U=u)

P(X=x )
.

For U=u1 and X =1 this equation yields:

P(U=u1 |X =1) =
P(X =1 |U=u1) ·P(U=u1)

P(X =1)

=
6/7 ·1/6

1/2
=

6

21
. [Exercise 6−5]

Using the same procedure, we obtain 5/21,4/21, . . . ,1/21, the corresponding probabilities for the

units u2,u3 . . . ,u6 , respectively. For U=u1 and X =0, we obtain

P(U=u1 |X =0) =
P(X =0 |U=u1) ·P(U=u1)

P(X =0)

=
1/7 ·1/6

1/2
=

1

21
. [Exercise 6−5]

Using the same procedure, we obtain 2/21, 3/21, . . . ,6/21 for the units u2,u3 . . . ,u6 , respectively.

⊲ Solution 6-7 According to Equation (6.58) we need the conditional probabilities P(X =1 |U=u)

displayed in Table 6.1. The other probabilities occurring in this equation can be computed from the

probabilities displayed in the table.

One of these other probabilities that needs some computation is P(X =1 |Z=m). For X =1 and

Z=m in the example of Table 6.1, Equation (6.59) results in:

P(X =1 |Z=m) =

∑

u
P(X =1 |U=u) ·P(U=u , Z=m)

P(Z=m)

=
(6/7) · (1/6)+ . . . + (3/7) · (1/6)+ (2/7) ·0+ (1/7) ·0

4/6
=

27

42
.

Using this result, Equation (6.58) yields:

P(U=u1|X =1, Z=m) =
P(X =1 |U=u1) ·P(U=u1, Z=m)

P(X =1 |Z=m) ·P(Z=m)

=
(6/7) · (1/6)

(27/42) · (4/6)
=

6/7

(27/42) ·4
=

6

18
,

as well as 5/18, 4/18, and 3/18 for the corresponding conditional probabilities for u2, u3, and u4.

The conditional probabilities P(U=u5 |X =1, Z=m) and P(U=u6 |X =1, Z=m) are zero.
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⊲ Solution 6-8 According to Equation (i) of Box 6.2,

E(Y |X = 0) =
∑

u
E(Y |X =0,U=u) ·P(U=u |X =0)

= (68+78+88+98) ·
1

10
+ (106+116) ·

3

10

= 33.2+66.6 = 99.8,

and
E(Y |X =1) =

∑

u
E(Y |X =1,U=u) ·P(U=u |X =1)

= (81+86+100+103) ·
3

14
+ (114+130) ·

1

14

≈ 79.286+17.429 ≈ 96.715.

⊲ Solution 6-9 Remember again, in this example, E(Y |X ,CX ) = E(Y |X ,U ). Hence,

E(τ0 |Z= f ) =
∑

u
E(Y |X =0,U=u) ·P(U=u |Z= f )

= 68 ·0+ . . . +98 ·0+106 ·
1

2
+116 ·

1

2
= 111.

E(τ1 |Z= f ) =
∑

u
E(Y |X =1,U=u) ·P(U=u |Z= f )

= 81 ·0+ . . . +103 ·0+114 ·
1

2
+130 ·

1

2
= 122.

⊲ Solution 6-10 In the examples presented in Tables 6.1 to 6.3, Z (sex) is U -measurable. According

to SN-Corollary 2.53, there is a mapping g : ΩU → {m, f } such that Z is the composite function of U

and g , that is, Z = g (U ). Therefore,

{U=u , Z=z} =

{

{U=u}, if g (u) = z,

Ø, otherwise.
(6.66)

According to Equation (6.66), the event to sample person u and that the sampled person is male is

identical to the event to sample person u, if that person is male [i. e., g (u) = m]. Correspondingly,

the event to sample person u and that the sampled person is female [i. e., g (u) = f ] is identical to

the event to sample person u, if that person is female. In contrast, the event to sample a male person

u and to observe Z (ω) = g
(

U (ω)
)

= f , and the event to sample a female person u and to observe

Z (ω)= g
(

U (ω)
)

= m are impossible. Equation (6.66) implies

P(U=u , Z=z) =

{

P(U=u), if g (u) = z,

0, otherwise,
(6.67)

and, because g (u) = z implies P(U=u , Z=z) > 0, we can conclude, that in these examples,

P(X=x |U=u , Z=z) =
P(X=x ,U=u , Z=z)

P(U=u , Z=z)

=
P(X=x ,U=u)

P(U=u)

= P(X=x |U=u), if P(U=u , Z=z) > 0.

(6.68)

Furthermore, in our examples, P(X=x , Z=z) > 0. Therefore, if P(U=u , Z=z) > 0, then
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P(U=u |X=x , Z=z) =
P(X=x ,U=u , Z=z)

P(X=x , Z=z)

=
P(X=x |U=u , Z=z) ·P(U=u , Z=z)

P(X=x |Z=z) ·P(Z=z)

=
P(X=x |U=u) ·P(U=u , Z=z)

P(X=x |Z=z) ·P(Z=z )
, [Eq. (6.68)]

which is Equation (6.58). If P(U=u, Z=z) = 0, then P(X=x ,U=u , Z=z) = 0. Hence, if P(U=u , Z=z) =

0, then

P(U=u |X=x , Z=z) =
P(X=x ,U=u , Z=z)

P(X=x , Z=z)
= 0.

The same result is also obtained applying Equation (6.58).



Chapter 7

Rosenbaum-Rubin Conditions

In chapter 6, we introduced unbiasedness of various conditional expectations, conditional

expectation values, prima facie effects, and prima facie effect functions. We also studied

how the various causal effects and effect functions can be identified by empirically es-

timable parameters if we can assume that certain terms are unbiased. Those unbiased-

ness conditions are a first of several kinds of causality conditions, which, together with the

structural components listed in a causality space, distinguish causal total effects from dif-

ferences between conditional expectation values that have no causal meaning.

In this chapter we introduce some other causality conditions, including the Rosen-

baum-Rubin condition of strong ignorability. It will be shown that this is the most restric-

tive of all causality conditions treated in this chapter. Note, however, that we adapted the

original Rosenbaum-Rubin condition by replacing their (deterministic) potential outcome

variables by the (probabilistic) true outcome variables introduced in chapter 4.

After a brief section on independence and conditional independence of random vari-

ables, we start with causality conditions that also imply unbiasedness, but are less restric-

tive than strong ignorability. Unlike the causality conditions treated in chapters 8 to ??,

all causality conditions treated in this chapter deal with the true outcome variables, and

they are empirically untestable. Nevertheless, they are meaningful from a theoretical per-

spective and distinguish conditional expectation values and conditional expectations that

have a causal meaning from ordinary conditional expectation values and conditional ex-

pectations that do not have any causal meaning at all.

7.1 Independence and Conditional Independence of Random Variables

For the sections to come it is useful to define independence and conditional indepen-

dence of two random variables and to review some properties. The concepts on which

the following definition is based have been introduced in chapter 3 [see, e. g., Def. 3.31

for the σ-algebra Y −1(A ′
Y ) generated by Y and Rem. 3.58 for the Z -conditional probability

P (A |Z ) of the event A].

Definition 7.1 (Independence and Conditional Independence of Random Variables)

Let X : Ω→Ω
′
X and Y : Ω→Ω

′
Y be random variables on the probability space (Ω,A,P )

with value spaces (Ω′
X ,A ′

X ) and (Ω′
Y ,A ′

Y ), respectively.

(i) Then X and Y are called independent (with respect to P), denoted by X ⊥⊥Y , if

P (A∩B) = P (A) ·P (B), ∀(A,B) ∈ X −1(A ′
X )×Y −1(A ′

Y ). (7.1)
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(ii) Additionally, let Z : Ω→Ω
′
Z be a random variable on (Ω,A,P ) with value space

(Ω′
Z ,A ′

Z ). Then X and Y are called Z-conditionally independent (with respect

to P), denoted by X ⊥⊥Y |Z , if

P (A∩B |Z ) =
P

P (A |Z ) ·P (B |Z ), ∀(A,B) ∈ X −1(A ′
X )×Y −1(A ′

Y ). (7.2)

Independence of two random variables is treated in more detail, for example, in SN-

section 5.4. If there is ambiguity with respect to the probability measure, then we also

may add the reference to the measure and use the notation X ⊥⊥
P

Y instead of X ⊥⊥Y . The

more general concept of conditional independence (with respect to P ) of two random vari-

ables X and Y given a random variable Z is presented in SN-chapter 16, including many

important theorems and propositions. A number of useful properties of conditional in-

dependence are summarized in SN-Boxes 16.2 and 16.3. Again we may use the notation

X ⊥⊥
P

Y |Z instead of X ⊥⊥Y |Z if there is ambiguity with respect to the measure P . (For an

overview of conditional independence in statistics see Dawid, 1979.)

Remark 7.2 (Independence Implies Mean-Independence) Under the assumptions of Def-

inition 7.1, if Y is a numerical random variable that is nonnegative or with a finite expec-

tation, then

Y ⊥⊥X ⇒ Y ⊢ X (7.3)

(see SN-Rem. 16.36 and Rem. 3.71 for the notation Y ⊢ X ). Similarly,

Y ⊥⊥X |Z ⇒ Y ⊢ X |Z (7.4)

(see SN-Rem. 16.35). That is, Z -conditional independence of Y and X implies Z -condi-

tional mean-independence of Y from X . The only assumption is that Y satisfies the re-

quirements mentioned above, which imply that the conditional expectation E (Y |X , Z ) ex-

ists (see SN-Th. 10.9). ⊳

Remark 7.3 (Conditional Independence of an Indicator and a Random Variable) Let W ,

X , and Z denote random variables on the same probability space (Ω,A,P ). Then

P (X=x |W ) =
P

P (X=x) ⇔ 1X=x ⊥⊥W, (7.5)

and, more generally,

P (X=x |W, Z ) =
P

P (X=x |Z ) ⇔ 1X=x ⊥⊥W |Z . (7.6)

According to this proposition, 1X=x ⊥⊥W |Z means that the conditional probability of the

event {X=x} does not depend on W , once we condition on Z . Also note that Proposition

(7.5) is a special case of (7.6) for Z being a constant, that is, for Z =α, α ∈R. Hence, it

suffices to prove Proposition (7.6) (see Lemma 7.4). ⊳
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Lemma 7.4 (Equivalent Propositions on Conditional Independence)

Let X , W , and Z be random variables on the probability space (Ω,A,P ) with value

spaces (Ω′
X ,A ′

X ), (Ω′
W ,A ′

W), and (Ω′
Z ,A ′

Z ), respectively. Furthermore, let x ∈Ω′
X and

{x } ∈A
′

X . Then the following two propositions are equivalent to each other:

(a) P (X=x |W, Z ) =
P

P (X=x |Z ).

(b) 1X=x ⊥⊥W | Z .

(Proof p. 174)

Remark 7.5 (An Implication of Independence) Another useful proposition about inde-

pendence and conditional independence of two random variables is

(

X ⊥⊥W ∧ σ(Z )⊂σ(W )
)

⇒
(

X ⊥⊥Z ∧ X ⊥⊥W |Z
)

, (7.7)

[see SN-Box 16.2 (ix)]. According to this proposition, if X and W are independent and Z

is W -measurable, then this implies independence of X and Z as well as Z-conditional

independence of X and W . This proposition holds for any random variables W , X , and

Z on the same probability space. None of them has to be numerical and none has to be

discrete. Also note that the roles of X and W can be exchanged. ⊳

Remark 7.6 (Independence of X and W if X is Discrete) If X is discrete, then, according

to SN-Theorem 16.26 and SN-Remark 16.27,

X ⊥⊥W ⇔ ∀x ∈X (Ω) : P (X=x |W ) =
P

P (X=x). (7.8)

That is, independence of X and W (with respect to the measure P ) is equivalent to postu-

lating P (X=x |W ) =
P

P (X=x) for all values x of X . ⊳

Remark 7.7 (Z -Conditional Independence of X and W if X is Discrete) Similarly, if X is

discrete, then, again according to SN-Theorem 16.26 and SN-Remark 16.27,

X ⊥⊥W |Z ⇔ ∀x ∈X (Ω) : P (X=x |Z ,W ) =
P

P (X=x |Z ). (7.9)

Hence, Z -conditional independence of X and W (with respect to the measure P ) is equiv-

alent to postulating P (X=x |Z ,W ) =
P

P (X=x |Z ) for all values x of X , provided that X is

discrete. ⊳

7.2 Mean-Independence of τx From X

A first causality condition introduced in this chapter is called mean-independence of τx

from X . Under the Assumptions 6.1 it is defined by

E (τx |X ) =
P

E (τx). (7.10)

A shortcut for this equation is τx ⊢ X (see Rem. 3.71).

Remark 7.8 (Mean-Independence of τx From 1X=x ) According to Theorem 6.9, mean-in-

dependence of τx from the indicator 1X=x is equivalent to unbiasedness of E (Y |X=x), if
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we presume P-uniqueness of τx (see Rem. 3.83 and Th. 3.84). That is, if the Assumptions

6.1 hold and τx is P-unique, then

τx ⊢ 1X=x ⇔ E (Y |X=x) is unbiased. (7.11)

In terms of equations, Proposition (7.11) can equivalently by written

E (τx |1X=x ) =
P

E (τx) ⇔ E (Y |X=x) = E (τx). (7.12)

⊳

Remark 7.9 (Dichotomous X ) If X is dichotomous, then

E (τx |X ) =
P

E (τx |1X=x ), (7.13)

because, if X is dichotomous, then the σ-algebras generated by X and 1X=x are identical.

[Remember, the σ-algebras σ(X ) and σ(1X=x ) play a crucial role in the definition of the

conditional expectations E (τx |X ) and E (τx |1X=x ) (see Def. 3.54)]. Hence, if X is dichoto-

mous and the true outcome variables τx are P-unique for both values x and x ′ of X , then

τx ⊢ X ⇔ τx ⊢ 1X=x ⇔ E (Y |X ) is unbiased, (7.14)

and this is equivalent to unbiasedness of E (Y |X=x) and E (Y |X=x ′). ⊳

Remark 7.10 (Mean-Independence of τx From X ) If X has more than two different values

and τx is P-unique for all x ∈X (Ω), then, according to Theorem 7.11 (i), mean-indepen-

dence of τx from X still implies unbiasedness of E (Y |X=x), but is not implied by unbi-

asedness. Hence, if τx ⊢ X , that is, if

E (τx |X ) =
P

E (τx), (7.15)

then τx ⊢ 1X=x . Using the shortcut

τ ⊢ X :⇔ ∀x ∈X (Ω) : τx ⊢ X , (7.16)

where τ := (τ0,τ1, . . . ,τJ ), then this result implies the proposition on unbiasedness of

E (Y |X ) stated in Theorem 7.11 (ii). ⊳

Theorem 7.11 (Implications of Mean-Independence of τx From X )

Let the Assumptions 6.1 hold.

(i) If τx is P-unique, then

τx ⊢ X ⇒ E (Y |X=x) is unbiased. (7.17)

(ii) If τx is P-unique for all x ∈X (Ω), then

τ ⊢ X ⇒ E (Y |X ) is unbiased. (7.18)

(Proof p. 175)
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Note that Proposition (i) of Theorem 7.11 holds for any value x of X for which P (X=x) >

0. Hence, if, for all x ∈X (Ω), τx is P-unique, then Proposition (7.17) holds for all x ∈X (Ω)

(see Exercise 7-1).

Remark 7.12 (Implications of τ ⊢X ) Under the Assumptions 6.1 and presuming that τx is

P-unique for all x ∈X (Ω), the propositions of Theorem 7.11 can be summarized as follows:

τ ⊢ X ⇔ ∀x ∈X (Ω) : τx ⊢ X

⇒ ∀x ∈X (Ω) : τx ⊢ 1X=x

⇔ ∀x ∈X (Ω) : E (Y |X=x) is unbiased

⇔ E (Y |X ) is unbiased.

(7.19)

The last two equivalence propositions have already been established in Theorem 6.9 and

Definition 6.2 (ii), respectively. ⊳

7.3 Conditional Mean-Independence of τx From X

Under the Assumptions 6.1 and assuming that Z is a random variable on (Ω,A,P ), we

define Z-conditional mean-independence of τx from X by

E (τx |X , Z ) =
P

E (τx |Z ). (7.20)

A shortcut of this equation is τx ⊢ X |Z .

Remark 7.13 (Z -Conditional Mean-Independence of τx From 1X=x ) The propositions of

Theorem 7.11 can be generalized to conditioning on a covariate Z of X . According to The-

orem 6.15, Z -conditional mean-independence of τx from the indicator 1X=x is equivalent

to unbiasedness of E X=x(Y |Z ), if we presume that τx is P-unique. That is, if the Assump-

tions 6.1 hold and τx is P-unique, then

τx ⊢ 1X=x |Z ⇔ E X=x(Y |Z ) is unbiased. (7.21)

An equivalent statement of Proposition (7.21) in terms of equations is

E (τx |1X=x , Z ) =
P

E (τx |Z ) ⇔ E X=x(Y |Z ) =
P

E (τx |Z ). (7.22)

Note again that in Propositions (7.21) and (7.22) we presume that Z is a covariate of X (see

Def. 4.4 and 4.9). ⊳

Example 7.14 (Z -Conditional Mean-Independence of τx From 1X=x ) Table 7.1 presents an

example in which Z -conditional mean-independence of τx from 1X=x holds for each value

x of X , but neither Z -conditional independence of τx from X (see section 7.17) nor Z -

conditional independence of τ from X (see section 7.4). Again, in this example, the per-

son variable U is a global potential confounder of X . Table 7.1 displays the true out-

comes under treatments 0, 1, and 2 as well as the probabilities P (U=u) for each obser-

vational unit to be sampled, the conditional probabilities to be assigned to treatment 1,

P (X =1 |U=u), and to treatment 2, P (X=2 |U=u). These are the fundamental parameters;
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Table 7.1. Z -conditional mean-independence of τx from 1X=x

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

S
e

x
Z

P
(U

=
u

)

P
(X

=
1
|U

)

P
(X

=
2
|U

)

τ 0
=

E
X
=

0
(Y

|U
)

τ 1
=

E
X
=

1
(Y

|U
)

τ 2
=

E
X
=

2
(Y

|U
)

δ
1

0
=
τ 1

−
τ 0

δ
2

0
=
τ 2

−
τ 0

P
(U

=
u
|X

=
0

)

P
(U

=
u
|X

=
1

)

P
(U

=
u
|X

=
2

)

u1 m 1/6 3/5 1/3 75 87 97 12 22 4/63 12/59 1/6

u2 m 1/6 1/2 1/3 70 80 92 10 22 10/63 10/59 1/6

u3 m 1/6 3/5 1/3 65 73 107 8 42 4/63 12/59 1/6

u4 f 1/6 1/2 1/3 106 114 90 8 −16 10/63 10/59 1/6

u5 f 1/6 1/4 1/3 116 130 120 14 4 25/63 5/59 1/6

u6 f 1/6 1/2 1/3 126 146 126 20 0 10/63 10/59 1/6

x = 0 x = 1 x = 2 x = 1 x = 2

E(τx ): 93 105 105.333 ATE x0 : 12 12.333

E(Y |X=x ): 102.857 101.186 105.333 PFEx0 : −1.671 2.476

E (τx |Z=m): 70 80 98.667 CTE Z ; x0(m) : 10 28.667

E (Y |X=x , Z=m): 70 80 98.667 PFE Z ; x0(m) : 10 28.667

E (τx |Z= f ): 116 130 112 CTE Z ;x0( f ) : 14 −4

E (Y |X=x , Z= f ): 116 130 112 PFEZ ;x0( f ) : 14 −4

all other parameters, such as associated individual causal effects, the conditional prob-

abilities P (U=u |X=x), etc. can be computed from these fundamental parameters. The

table also displays the values of the potential confounder Z = sex. Note again that the ta-

ble does not contain sample data; It displays the parameters describing the laws of the

single-unit trial.

Verifying Conditional Mean-Independence of τx From 1X=x . In this random experi-

ment, the true treatment probabilities and true outcomes are such that τx ⊢ 1X=x |Z holds

for each of the three values of X , that is,

E (τ0 |1X =0, Z ) = E (τ0 |Z ), E (τ1 |1X =1, Z ) = E (τ1 |Z ), E (τ2 |1X =2, Z ) = E (τ2 |Z ). (7.23)

For example, in order to verify that τ1 ⊢ 1X =1 |Z , that is, E (τ1 |1X =1, Z ) = E (τ1 |Z ), we have

to show that

E (τ1 |1X =1=0, Z=m) = E (τ1 |Z=m),

E (τ1 |1X =1=0, Z= f ) = E (τ1 |Z= f ),

E (τ1 |1X =1=1, Z=m) = E (τ1 |Z=m),

E (τ1 |1X =1=1, Z= f ) = E (τ1 |Z= f )
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Table 7.2. Conditional probabilities P(U=u |X=x , Z=z) for Table 7.1

P
e

rs
o

n
v

a
ri

a
b

le
U

P
(U

=
u
|X

=
0

,Z
=

m
)

P
(U

=
u
|X

=
1

,Z
=

m
)

P
(U

=
u
|X

=
2

,Z
=

m
)

P
(U

=
u
|X

=
0

,Z
=

f
)

P
(U

=
u
|X

=
1

,Z
=

f
)

P
(U

=
u
|X

=
2

,Z
=

f
)

u1 2/9 6/17 1/3 0 0 0

u2 5/9 5/17 1/3 0 0 0

u3 2/9 6/17 1/3 0 0 0

u4 0 0 0 2/9 2/5 1/3

u5 0 0 0 5/9 1/5 1/3

u6 0 0 0 2/9 2/5 1/3

hold for these four conditional expectation values.

The conditional expectation value E (τ1 |1X =1=0, Z=m) can be computed from Tables

7.1 and 7.2 by

E (τ1 |1X =1=0, Z=m)

= E (τ1 |X =0, Z=m) =
∑

u

E (Y |X =1,U=u) ·P (U=u |X =0, Z=m)

= 87 ·
2

9
+80 ·

5

9
+73 ·

2

9
= 80

(7.24)

(see Exercise ???). This is exactly the same result as obtained for

E (τ1 |Z=m) =
∑

u

E (Y |X=1,U=u) ·P (U=u |Z=m) = (87+80+73) ·
1

3
= 80.

Analogously,

E (τ1 |1X =1=1, Z=m)

= E (τ1 |X =1, Z=m) =
∑

u

E (Y |X =1,U=u) ·P (U=u |X =1, Z=m)

= 87 ·
6

17
+80 ·

5

17
+73 ·

6

17
= 80.

(7.25)

Hence,

E (τ1 |X=0, Z=m) = E (τ1 |X=1, Z=m) = E (τ1 |Z=m) = 80,

and the correspondig identities hold for the other two combinations of values of X and Z :

E (τ1 |X=0, Z= f ) = E (τ1 |X=1, Z= f ) = E (τ1 |Z=m) = 130.

In the same way it can be shown that τ0 ⊢ 1X =0 |Z and τ2 ⊢ 1X =2 |Z hold as well. ⊳
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Remark 7.15 (Z -Conditional Mean-Independence of τx From X ) If X has more than two

different values and we assume

E (τx |X , Z ) =
P

E (τx |Z ), (7.26)

abbreviated by τx ⊢ X |Z , then this implies τx ⊢ 1X=x |Z , which is equivalent to E X=x(Y |Z )

being unbiased, provided that τx is P-unique and Z is a covariate of X . ⊳

Remark 7.16 (Dichotomous X ) If X is dichotomous, then

E (τx |X , Z ) =
P

E (τx |1X=x , Z ), (7.27)

because σ(X , Z ) = σ(1X=x , Z ) (see again Def. 3.54). Hence, if X is dichotomous, τx is

P-unique for both values x of X , and Z is a covariate of X , then

τx ⊢ X |Z ⇔ τx ⊢ 1X=x |Z ⇔ E (Y |X , Z ) is unbiased. (7.28)

⊳

Remark 7.17 (Strong Mean-Ignorability) For all x ∈X (Ω), assume that τx is P-unique,

that Z is a covariate of X , and τx ⊢ X |Z . Then, alluding to Rosenbaum and Rubin’s strong

ignorability condition (see, e. g., Rosenbaum & Rubin, 1983b), we say that strong mean-

ignorability holds. Now we define τ := (τ0,τ1, . . . ,τJ ) and introduce the shortcut

τ ⊢ X |Z :⇔ ∀x ∈X (Ω) : E (τx |X , Z ) =
P

E (τx |Z ). (7.29)

Then τ ⊢ X |Z is a shortcut for strong mean-ignorability, presuming that each τx , x ∈X (Ω),

is P-unique and Z is a covariate of X . ⊳

According to Theorem 7.18 (iii), strong mean ignorability implies that E (Y |X , Z ) is un-

biased.

Theorem 7.18 (Implications of Z -Conditional Mean-Independence of τx From X )

Let the Assumptions 6.1 hold and let Z be a covariate of X .

(i) If τx is P-unique, then

τx ⊢ X |Z ⇒ E X=x(Y |Z ) is unbiased. (7.30)

(ii) If τx is P-unique and P (X=x, Z=z) > 0, then

τx ⊢ X |Z ⇒ E (Y |X=x , Z=z) is unbiased. (7.31)

(iii) If, for all values x ∈X (Ω), τx is P-unique, then

τ ⊢ X |Z ⇒ E (Y |X , Z ) is unbiased. (7.32)

(i).

E (τx |1X=x , Z ) =
P

E
(

E (τx |X , Z )
∣

∣1X=x , Z
)

[SN-Box 10.2 (v)]

=
P

E
(

E (τx |Z )
∣

∣1X=x , Z
)

[(7.20)]
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=
P

E (τx |Z ). [SN-Box 10.2 (vii)]

If we presume that τx is P-unique, then, according to Theorem 6.15, this equation is

equivalent to unbiasedness of E X=x(Y |Z ).

(ii). If τx is P-unique, then it is also P Z=z-unique [(see SN-Box 14.1 (v)]. Furthermore,

(i) implies

E X=x(Y |Z ) =
P

E (τx |Z ).

If P (X=x, Z=z) > 0, then P (Z=z) > 0, and, according to SN-Equation (10.31), this

equation implies

E X=x(Y |Z=z) = E (τx |Z=z).

Equation (3.70) then yields E (Y |X=x, Z=z) = E (τx |Z=z).

(iii). This proposition immediately follows from (i), (7.29), and Definition 6.11 (iii).

(Proof p. 175)

Again, note that Theorem 7.18 (i) holds for any value x of X for which P (X=x) >

0. Hence, if τx is P-unique for all values x ∈X (Ω), then Proposition (7.30) holds for all

x ∈X (Ω).

Remark 7.19 (Implications of Strong Mean-Ignorability) Presuming that τx is P-unique

for all x ∈X (Ω) and that Z is a covariate of X , the propositions of Theorem 7.18 can be

summarized by

τ ⊢ X |Z ⇔ ∀x ∈X (Ω) : τx ⊢ X |Z

⇒ ∀x ∈X (Ω) : τx ⊢ 1X=x |Z

⇔ ∀x ∈X (Ω) : E X=x(Y |Z ) is unbiased

⇔ E (Y |X , Z ) is unbiased.

(7.33)

Again, note that the last two equivalence propositions have already been established in

Theorem 6.15 and Definition 6.11 (iii), respectively. ⊳

Example 7.20 (Conditional Mean-Independence of τ From X ) Table 7.3 presents an ex-

ample in which Z -conditional mean-independence of τ from X holds, but not Z -condi-

tional independence of τ from X (see section 7.4). Again, in this example, the person vari-

able U is a global potential confounder of X . This table displays the true outcomes un-

der treatment and under control as well as the probabilities for each observational unit

to be assigned to treatment condition X=1. These are the fundamental parameters; all

other parameters, such as associated individual causal effects, the conditional probabili-

ties P (U=u |X=x), etc. can be computed from these fundamental parameters. The table

also displays the values of the potential confounder Z = sex. Note again that the table does

not contain any sample data. It displays the parameters describing the laws of the single-

unit trial.

Verifying That Conditional Mean-Independence of τ From X holds. In this random ex-

periment, the true treatment probabilities and true outcomes are such that τ⊢ X |Z holds,
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Table 7.3. Z -conditional mean-independence of τ from X

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

S
e

x
Z

P
(U

=
u

)

P
(X

=
1
|U

)

τ 0
=

E
X
=

0
(Y

|U
)

τ 1
=

E
X
=

1
(Y

|U
)

δ
1

0
=
τ 1

−
τ 0

P
(U

=
u
|X

=
0

)

P
(U

=
u
|X

=
1

)

P
(U

=
u
|X

=
0

,Z
=

m
)

P
(U

=
u
|X

=
1

,Z
=

m
)

P
(U

=
u
|X

=
0

,Z
=

f
)

P
(U

=
u
|X

=
1

,Z
=

f
)

u1 m 1/6 16/20 75 87 12 4/50 16/70 2/10 8/30 0 0

u2 m 1/6 14/20 70 80 10 6/50 14/70 3/10 7/30 0 0

u3 m 1/6 16/20 93 97 4 4/50 16/70 2/10 8/30 0 0

u4 m 1/6 14/20 98 104 6 6/50 14/70 3/10 7/30 0 0

u5 f 1/6 5/20 106 114 8 15/50 5/70 0 0 1/2 1/2

u6 f 1/6 5/20 116 130 14 15/50 5/70 0 0 1/2 1/2

x = 0 x = 1

E(τx ): 93 102 ATE 10 = 9

E(Y |X=x ): 102.2 96.286 PFE10 =−3.914

E(τx |Z=m): 84 92 CTE Z ;10(m) = 8

E(Y |X=x , Z=m): 84 92 PFE Z ;10(m) = 8

E(τx |Z= f ): 111 122 CTE Z ;10( f ) = 11

E(Y |X=x , Z= f ): 111 122 PFE Z ;10( f ) = 11

that is,

E (τ0 |X , Z ) = E (τ0 |Z ) and E (τ1 |X , Z ) = E (τ1 |Z ). (7.34)

In order to verify that τ⊢ X |Z holds, consider

E (τx |X=x∗, Z=z) =
∑

u

E (Y |X=x,U=u) ·P (U=u |X=x∗, Z=z), (7.35)

which is true if there is a mapping f such that Z = f (U ) and P (X=x∗, Z=z) > 0 (see Ex-

ercise ???). Note that the values x and x∗ of X may be different in this equation. If we

want to apply this equation to the example in Table 7.3, we have to use the probabilities

P (U=u |X=x∗, Z=z) displayed in the last four columns of Table 7.3 (see Exercise 6-7) ???.

Using Equation (7.35), we can now compute

E (τ0 |X=1, Z=m) =
∑

u
E (Y |X=0,U=u) ·P (U=u |X=1, Z=m)

= 75 ·8/30+70 ·7/30+93 ·8/30+98 ·7/30 = 84.

This is exactly the same result as obtained for

E (τ0 |Z=m) =
∑

u

E (Y |X=0,U=u) ·P (U=u |Z=m) = (75+70+93+98) ·1/4 = 84.
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Hence, E (τ0 |X=1, Z=m) = E (τ0 |Z=m), and the same identities can be shown for all

other combinations of values of X and Z . Because the corresponding property also holds

for τ1 [see Eq. (7.34)], the true outcome variables τ0 and τ1 are Z -conditionally mean-inde-

pendent from the treatment variable X . ⊳

7.4 Z -Conditional Independence of τ and X (Strong Ignorability)

Rosenbaum and Rubin (1983b) presented the strong ignorability condition, which plays a

crucial role in Rubin’s approach to causal effects. In this section we translate this condition

into probability theory, replacing Rubin’s potential outcome variables by the true outcome

variables.

Remark 7.21 (Strong Ignorability) Let X (Ω) = {0,1, . . . , J }, and let τ= (τ0,τ1, . . . ,τJ ) denote

a (J+1)-dimensional random variable consisting of the unidimensional true outcome vari-

ables τ0,τ1, . . . ,τJ . Furthermore, assume that each τx , x ∈X (Ω), is P-unique, and that Z is a

covariate of X . Then strong ignorability given Z can be written as

τ⊥⊥X |Z , (7.36)

or equivalently, using Lemma 7.4,

∀x ∈X (Ω) : P (X=x |τ, Z ) =
P

P (X=x |Z ). (7.37)

Note that the additional assumption P (X=x |Z ) >
P

0 of Rosenbaum and Rubin (1983b)

follows from P-uniqueness of τx (see Exercise 7-2). ⊳

Remark 7.22 (A Reminder About P-Uniqueness) Also remember that

P (X=x |CX ) >
P

0 ⇔ τx is P-unique, (7.38)

and that P-uniqueness of τx is required in the definition of causal conditional and average

total effects (see Defs. 5.17 and 5.8). The weaker assumption P (X=x |Z ) >
P

0 is neither suf-

ficient for the definition of the causal average total effect nor is it sufficient for τ⊥⊥X |Z to

imply unbiasedness of E (Y |X , Z ). ⊳

Example 7.23 (Z -Conditional Independence of τ and X ) Table 7.4 displays the true out-

comes under treatment and under control as well as the probabilities for each observa-

tional unit to be assigned to treatment condition 1. In the random experiment presented in

this table, the true treatment probabilities and true outcomes are such that Z -conditional

independence of τ and X and strong ignorability hold.

We check if Proposition (7.37) actually holds for X=1, that is, we check

P (X=1 |Z ,τ) =
P

P (X=1 |Z ). (7.39)

According to Lemma 7.4, Equation (7.39) is equivalent to τ⊥⊥1X =1 |Z and because, in this

example, 1X =1 = X , this equation is equivalent to τ⊥⊥X |Z . Because Z and τ are discrete,

in this example, Equation (7.39) is also equivalent to

P (X=1 |Z=z,τ=t ) = P (X=1 |Z=z),

for all pairs (z, t) with P (Z=z,τ=t ) > 0
(7.40)
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Table 7.4. Strong ignorability

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

S
e

x
Z

1

C
o

ll
e

g
e

Z
2

P
(U

=
u

)

P
(X

=
1
|U

)

P
(X

=
1
|Z

1
,Z

2
)

τ 0
=

E
X
=

0
(Y

|U
)

τ 1
=

E
X
=

1
(Y

|U
)

δ
1

0
=
τ 1

−
τ 0

P
(U

=
u
|X

=
0

)

P
(U

=
u
|X

=
1

)

u1 m no 1/6 7/8 6/8 72 83 11 1/22 7/26

u2 m no 1/6 5/8 6/8 72 83 11 3/22 5/26

u3 m yes 1/6 5/8 5/8 95 100 5 3/22 5/26

u4 m yes 1/6 5/8 5/8 100 105 5 3/22 5/26

u5 f yes 1/6 2/8 2/8 106 114 8 6/22 2/26

u6 f yes 1/6 2/8 2/8 116 130 14 6/22 2/26

x = 0 x = 1

E(τx ): 93.5 102.5 ATE 10 = 9

E(Y |X=x ): 100.227 96.5 PFE10 =−3.727

E
(

τx

∣

∣ Z=(m, no )
)

: 72 83 CTE Z ;10(m, no )= 11

E
(

Y
∣

∣ X=x , Z=(m, no )
)

: 72 83 PFEZ ;10(m, no )= 11

E
(

τx

∣

∣ Z=(m, yes )
)

: 97.5 102.5 CTE Z ;10(m, yes ) = 5

E
(

Y
∣

∣ X=x , Z=(m, yes )
)

: 97.5 102.5 PFEZ ;10(m, yes ) = 5

E
(

τx

∣

∣ Z=( f, yes )
)

: 111 122 CTE Z ;10( f, yes ) = 11

E
(

Y
∣

∣ X=x , Z=( f, yes )
)

: 111 122 PFEZ ;10( f, yes ) = 11

Note: In this table Z = (Z1, Z2) is a two-dimensional random variable.

[see SN-Rem. 10.4 and SN-Cor. 10.39 (i)]. Note that, in this example, Z = (Z1, Z2) and τ =

(τ0,τ1) are two-dimensional random variables.

In the sequel, we use

P (X=x |V =v) =
∑

u

P (X=x |V =v ,U=u) ·P (U=u |V =v), (7.41)

which is always true if P (V =v ,U=u) > 0 for all values of U [see SN-Box 9.2 (ii) for

Y = 1X=x ]. Using Equation (7.41) with Z taking the role of V and considering X=1 and

Z=(m,no) yields

P
(

X=1
∣

∣ Z=(m,no)
)

=
∑

u

P
(

X=1
∣

∣Z=(m,no),U=u
)

·P
(

U=u
∣

∣Z=(m,no)
)

= 7/8 ·1/2+5/8 ·1/2 = 6/8.

In this case we only have to sum over the first two units displayed in Table 7.4, because,

for the other four units, the probabilities P
(

U=u
∣

∣ Z=(m,no)
)

are zero. Applying Equation
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(7.41) to V = (Z ,τ) and the combination of values Z = (m,no) and τ= (72,83) yields exactly

the same probability

P
(

X=1
∣

∣Z=(m,no),τ=(72,83)
)

=
∑

u
P

(

X=1
∣

∣ Z=(m,no),τ=(72,83),U=u
)

·P
(

U=u
∣

∣Z=(m,no),τ=(72,83)
)

= 7/8 ·1/2+5/8 ·1/2 = 6/8

(see the first two rows of Table 7.4). Hence we have shown

P
(

X=1
∣

∣Z=(m,no)
)

= P
(

X=1
∣

∣Z=(m,no),τ=(72,83)
)

= 6/8.

Using Equation (7.41) with Z taking the role of V and considering the case X=1 and

Z=(m,yes) yields

P
(

X=1
∣

∣ Z=(m,yes)
)

=
∑

u

P
(

X=1
∣

∣Z=(m,yes),U=u
)

·P
(

U=u
∣

∣Z=(m,yes)
)

= 5/8 ·1/2+5/8 ·1/2 = 5/8.

In this case we only have to sum over units three and four displayed in Table 7.4; for the

other four units, the conditional probabilities P
(

U=u
∣

∣ Z=(m,yes)
)

are zero.

Applying Equation (7.41) to V = (Z ,τ) and the combination of values Z = (m,yes) and

τ= (95,100) yields exactly the same conditional probability

P
(

X=1
∣

∣Z=(m,yes),τ=(95,100)
)

=
∑

u

P
(

X=1
∣

∣ Z=(m,yes),τ=(95,100),U=u
)

·P
(

U=u
∣

∣Z=(m,yes),τ=(95,100)
)

= 5/8 ·1 = 5/8

(see the third row of Table 7.4). The same result is obtained if we apply Equation (7.41) to

V = (Z ,τ) and the combination of values Z = (m,yes) and τ= (100,105) (see the fourth row

of Table 7.4). Hence we have shown

P
(

X=1
∣

∣ Z=(m,yes)
)

= P
(

X=1
∣

∣ Z=(m,yes),τ=(95,100)
)

= P
(

X=1
∣

∣ Z=(m,yes),τ=(100,105)
)

= 5/8.

Finally, the analog procedure yields

P
(

X=1
∣

∣Z=( f,yes)
)

= P
(

X=1
∣

∣ Z=( f,yes),τ=(106,114)
)

= P
(

X=1
∣

∣ Z=( f,yes),τ=(116,130)
)

= 2/8.

This proves that Proposition (7.40), and with it, Equation (7.39) hold in this example. ⊳

Remark 7.24 (Weak Ignorability and Some Weaker Causality Conditions) Assuming that

τx is P-unique and that Z is a covariate of X , we start investigating the implications of the

following four causality conditions, all of which are weaker than strong ignorability. That

is, all four conditions are less restrictive than strong ignorability and all four are implied

by strong ignorability.



168 7 Rosenbaum-Rubin Conditions

First,

P (X=x |τx , Z ) =
P

P (X=x |Z ), (7.42)

which we denote by τx ⊥⊥1X=x |Z . Second,

∀x ∈X (Ω) : P (X=x |τx , Z ) =
P

P (X=x |Z ), (7.43)

denoted by ∀x : τx ⊥⊥1X=x |Z . Third

∀x ′
∈X (Ω) : P (X=x ′

|τx , Z ) =
P

P (X=x ′
|Z ), (7.44)

denoted by τx ⊥⊥X |Z . Fourth,

∀x ∈X (Ω) : τx ⊥⊥X |Z , (7.45)

denoted by ∀x : τx ⊥⊥X |Z . This condition is called weak ignorability in Porta (2014, p. 142)

According to the following theorem, if we assume that τx is P-unique and that Z is a

covariate of X , then τx ⊥⊥1X=x |Z implies unbiasedness of E X=x(Y |Z ), which is equivalent

to τx ⊢ 1X=x |Z . Using the shortcut

∀x : τx ⊢ 1X=x |Z :⇔ ∀x ∈X (Ω) : E (τx |1X=x , Z ) =
P

E (τx |Z ), (7.46)

Theorem 7.25 (ii) states a sufficient condition for unbiasedness of E (Y |X , Z ). ⊳

Theorem 7.25 (Implications of τx ⊥⊥1X=x |Z )

Let the Assumptions 6.1 hold and let Z be a covariate of X .

(i) If τx is P-unique, then

τx ⊥⊥1X=x |Z ⇒ E X=x(Y |Z ) is unbiased. (7.47)

(ii) If τx is P-unique for all x ∈X (Ω), then

∀x : τx ⊢ 1X=x |Z ⇒ E (Y |X , Z ) is unbiased. (7.48)

(Proof p. 175)

Again, note that proposition (i) of Theorem 7.25 holds for any value x of X for which

P (X=x) > 0. Hence, if τx is P-unique for all x ∈X (Ω) and Z is a covariate of X , then Propo-

sition (7.47) holds for all x ∈X (Ω).

Remark 7.26 (Implications of ∀x : τx ⊥⊥1X=x |Z ) If we presume that τx is P-unique for all

x ∈X (Ω) and that Z is a covariate of X , then the propositions of Theorem 7.25 can be

summarized as follows:

∀x : τx ⊥⊥1X=x |Z ⇒ ∀x : τx ⊢ 1X=x |Z

⇔ ∀x ∈X (Ω) : E X=x(Y |Z ) is unbiased

⇔ E (Y |X , Z ) is unbiased.

(7.49)

⊳

For Z being a constant, Theorem 7.25 immediately implies the following corollary.
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Corollary 7.27 (Implications of τx ⊥⊥1X=x )

Let the Assumptions 6.1 hold.

(i) If τx is P-unique, then

τx ⊥⊥1X=x ⇒ E (Y |X=x) is unbiased. (7.50)

(ii) If τx is P-unique for all x ∈X (Ω), then

∀x : τx ⊥⊥1X=x ⇒ E (Y |X ) is unbiased. (7.51)

Of course, if τx is P-unique for all x ∈X (Ω), then Proposition (7.50) holds for all x ∈X (Ω).

Remark 7.28 (Implications of ∀x : τx ⊥⊥1X=x ) If we introduce the shortcuts

∀x : τx ⊥⊥1X=x :⇔ ∀x ∈X (Ω) : τx ⊥⊥1X=x , (7.52)

and

∀x : τx ⊢ 1X=x :⇔ ∀x ∈X (Ω) : τx ⊢ 1X=x , (7.53)

then, presuming that τx is P-unique for all x ∈X (Ω), the propositions of Corollary 7.27 can

be written as follows:

∀x : τx ⊥⊥1X=x ⇒ ∀x : τx ⊢ 1X=x

⇔ ∀x ∈X (Ω) : E (Y |X=x) is unbiased

⇔ E (Y |X ) is unbiased.

(7.54)

⊳

In the following corollary we use the shortcuts

∀x : τx ⊥⊥X |Z :⇔ ∀x ∈X (Ω) : τx ⊥⊥X |Z , (7.55)

and

∀x : τx ⊢ X |Z :⇔ ∀x ∈X (Ω) : τx ⊢ X |Z . (7.56)

Corollary 7.29 (Implications of τx ⊥⊥X |Z )

Let the Assumptions 6.1 hold and let Z be a covariate of X .

(i) If τx is P-unique, then

τx ⊥⊥X |Z ⇒ τx ⊥⊥1X=x |Z and τx ⊢ X |Z . (7.57)

(ii) If τx is P-unique for all x ∈X (Ω), then

∀x : τx ⊥⊥X |Z ⇒ E (Y |X , Z ) is unbiased. (7.58)

(Proof p. 175)
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If τx is P-unique for all x ∈X (Ω) and Z is a covariate of X , then Proposition (7.57) holds

for all x ∈X (Ω).

Remark 7.30 (Implications of ∀x : τx ⊥⊥X |Z ) If we presume that τx is P-unique for all

x ∈X (Ω) and Z is a covariate of X , then the propositions of Corollary 7.29 can be sum-

marized as follows:

∀x : τx ⊥⊥X |Z ⇒ ∀x : τx ⊥⊥1X=x |Z

⇒ ∀x : τx ⊢ 1X=x |Z

⇔ ∀x ∈X (Ω) : E X=x(Y |Z ) is unbiased

⇔ E (Y |X , Z ) is unbiased.

(7.59)

⊳

For Z being a constant, Corollary 7.29 immediately implies the following corollary.

Corollary 7.31 (Implications of τx ⊥⊥X )

Let the Assumptions 6.1 hold.

(i) If τx is P-unique, then

τx ⊥⊥X ⇒ τx ⊥⊥1X=x and τx ⊢ X . (7.60)

(ii) If τx is P-unique for all x ∈X (Ω), then

∀x : τx ⊥⊥X ⇒ E (Y |X ) is unbiased. (7.61)

Of course, if τx is P-unique for all x ∈X (Ω), then Proposition (7.60) holds for all x ∈X (Ω),

Remark 7.32 (Implications of ∀x : τx ⊥⊥X ) Presuming that τx is P-unique for all x ∈X (Ω),

the propositions of Corollary 7.29 can be summarized as follows:

∀x : τx ⊥⊥X ⇒ ∀x : τx ⊥⊥1X=x

⇒ ∀x : τx ⊢ 1X=x

⇔ ∀x ∈X (Ω) : E (Y |X=x) is unbiased

⇔ E (Y |X ) is unbiased.

(7.62)

⊳

Remark 7.33 (τ⊥⊥X |Z implies τx ⊥⊥1X=x |Z ) According to Lemma 7.4,

P (X=x |Z ,τx ) =
P

P (X=x |Z ) ⇔ τx ⊥⊥1X=x | Z . (7.63)

As mentioned before, even if we assume τx ⊥⊥X | Z for all x ∈X (Ω), then this is less re-

strictive than the original strong ignorability condition of Rosenbaum and Rubin [see

Eq. (7.36)]. More precisely, for τ= (τ0,τ1, . . . ,τJ ),

τ⊥⊥X |Z ⇒ ∀x ∈X (Ω) : τx ⊥⊥X | Z (7.64)

[see SN-Box 16.3 (vi)], but not vice versa. Hence, together with Theorem 7.25 this immedi-

ately implies the following corollary. ⊳
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Corollary 7.34 (Implications of τ⊥⊥X |Z )

Let the Assumptions 6.1 hold, assume that τx is P-unique, for all x ∈X (Ω), and let Z be

a covariate of X . Then:

τ⊥⊥X |Z ⇒ ∀x ∈X (Ω) : τx ⊥⊥X |Z (7.65)

⇒ ∀x ∈X (Ω) : τx ⊥⊥1X=x |Z (7.66)

⇒ ∀x ∈X (Ω) : τx ⊢ 1X=x |Z (7.67)

⇔ ∀x ∈X (Ω) : E X=x(Y |Z ) is unbiased (7.68)

⇒ E (Y |X , Z ) is unbiased. (7.69)

For Z being a constant, Corollary 7.34 immediately yields the following corollary.

Corollary 7.35 (Implications of τ⊥⊥X )

Let the Assumptions 6.1 hold and assume that τx is P-unique for all x ∈X (Ω). Then

τ⊥⊥X ⇒ ∀x ∈X (Ω) : τx ⊥⊥X (7.70)

⇒ ∀x ∈X (Ω) : τx ⊥⊥1X=x (7.71)

⇒ ∀x ∈X (Ω) : τx ⊢ 1X=x (7.72)

⇔ ∀x ∈X (Ω) : E (Y |X=x) is unbiased (7.73)

⇒ E (Y |X ) is unbiased. (7.74)

Remark 7.36 (A Note on Testability) As mentioned before, unbiasedness of the condi-

tional expectations E (Y |X ) and E (Y |X , Z ) cannot be tested in empirical applications, be-

cause this involves the true outcome variables τx , which cannot be estimated for more

than one single value x of X (see the fundamental problem of causal inference described

in the Preface). The same applies to the other causality conditions described in this sec-

tion, including the most restrictive one, strong ignorability. Strong ignorability is interest-

ing from a theoretical perspective, because it implies unbiasedness of the conditional ex-

pectations E X=x(Y |Z ) and E (Y |X , Z ), provided that we presume P-uniqueness of the true

outcome variables τx and that Z is a covariate of X . However, unlike the causality con-

ditions treated in chapters 8 to ??, they cannot be tested empirically without unrealistic

additional assumptions, and this is why they cannot be used for covariate selection. ⊳

Box 7.1 summarizes all causality conditions, their definitions and their symbols, treated

in this chapter, and Tables 7.5 and 7.6 display the implication relations between all these

conditions. Note that the propositions about the implications summarized in Table 7.5

are special cases of the corresponding propositions summarized in Table 7.6, which are

proved in Exercise 7-3.
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Box 7.1 Causality conditions involving the true outcome variables

Let
(

(Ω,A,P), (Ft , t ∈T ), X ,Y
)

be a causality space, let Y be real-valued with E(Y 2) < ∞,

let X be discrete with a finite number of values, P(X=x ) > 0 for all x ∈X (Ω) = {0,1, . . . , J }.

Furthermore, let CX be a global potential confounder of X , let Z be a covariate of X , assume

that τx is P-unique for all x ∈X (Ω), and define τ := (τ0,τ1, . . . ,τJ ).

Each of the following four conditions (listed by symbol and meaning) implies that E(Y |X=x )

is unbiased:

τx ⊢ 1X=x E(τx |1X=x ) = E(τx ).

τx ⊥⊥1X=x P(X=x |τx ) =
P

P(X=x ).

τx ⊢ X E(τx |X ) = E(τx ).

τx ⊥⊥X ∀x ′∈X (Ω) : P(X =x ′ |τx ) =
P

P(X =x ′).

Each of the following five conditions implies that E(Y |X ) is unbiased:

∀x : τx ⊢ 1X=x ∀x ∈X (Ω) : E(τx |1X=x ) = E(τx ).

∀x : τx ⊥⊥1X=x ∀x ∈X (Ω) : P(X=x |τx ) =
P

P(X=x ).

∀x : τx ⊥⊥X ∀x, x ′∈X (Ω) : P(X =x ′ |τx ) =
P

P(X =x ′).

τ ⊢ X ∀x ∈X (Ω) : E(τx |X ) =
P

E(τx ).

τ⊥⊥X ∀x ∈X (Ω) : P(X=x |τ) =
P

P(X=x ).

Each of the following four conditions implies that E X=x(Y |Z ) is unbiased:

τx ⊢ 1X=x |Z E(τx |1X=x , Z ) =
P

E(τx |Z ).

τx ⊥⊥1X=x |Z P(X=x |τx , Z ) =
P

P(X=x |Z ).

τx ⊢ X |Z E(τx |X , Z ) =
P

E(τx |Z ).

τx ⊥⊥X |Z P(X =x ′ |τx , Z ) =
P

P(X =x ′ |Z ), ∀ x ′∈ X (Ω).

Each of the following five conditions implies that E(Y |X , Z ) is unbiased:

∀x : τx ⊢ 1X=x |Z ∀x ∈X (Ω) : E(τx |1X=x , Z ) =
P

E(τx |Z ).

∀x : τx ⊥⊥1X=x |Z ∀x ∈X (Ω) : P(X=x |τx , Z ) =
P

P(X=x |Z ).

∀x : τx ⊥⊥X |Z ∀x, x ′∈X (Ω) : P(X =x ′ |τx , Z ) =
P

P(X =x ′ |Z ).

τ ⊢ X |Z ∀x ∈X (Ω) : E(τx |X , Z ) =
P

E(τx |Z ).

τ⊥⊥X |Z ∀x ∈X (Ω) : P(X=x |τ, Z ) =
P

P(X=x |Z ).



7.5 Summary and Conclusions 173

Table 7.5. Implication relations among causality conditions for E(Y |X=x ) and E(Y |X )

τ x
⊢

1 X
=

x

τ x
⊥⊥

1 X
=

x

τ x
⊢

X

τ x
⊥⊥

X

∀
x

:
τ x

⊢
1 X

=
x

∀
x

:
τ x

⊥⊥
1 X

=
x

τ
⊢

X

∀
x

:
τ x

⊥⊥
X

τ
⊥⊥

X

τx ⊢ 1X=x ⇔

τx ⊥⊥1X=x ⇒ ⇔

τx ⊢X ⇒ ⇔

τx ⊥⊥X ⇒ ⇒ ⇒ ⇔

∀x : τx ⊢ 1X=x ⇒ ⇔

∀x : τx ⊥⊥1X=x ⇒ ⇒ ⇒ ⇔

τ⊢X ⇒ ⇒ ⇒ ⇔

∀x : τx ⊥⊥X ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇔

τ⊥⊥X ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇔

Note: An entry ⇒ (⇔) means that the condition in the row implies (is equivalent to) the condi-

tion in the column, provided that the Assumptions 6.1 hold. The symbols involving⊢ and ⊥⊥ are

explained in Box 7.1. Presuming P-uniqueness of τx , the first four conditions imply unbiased-

ness of E(Y |X=x ) and the last five imply unbiasedness of E(Y |X ), provided that P-uniqueness

of τx holds for all x ∈X (Ω).

7.5 Summary and Conclusions

In this chapter, we treated some causality conditions, all of which are listed in Box 7.1. The

implication relations among these causality conditions are listed in Tables 7.5 and 7.6. Ac-

cording to the last row of Table 7.6, Rosenbaum and Rubin’s strong ignorability condition

is the strongest (i. e., the most restrictive) condition; it implies all other causality condi-

tions treated in this chapter. Note that there are no implications between the causality

conditions summarized in Table 7.5 and those listed in Table 7.6. For example, τ⊥⊥X , does

not imply any of the causality conditions listed in Table 7.6. This implies, for example, that

∀x : τx ⊢ 1X=x , which is equivalent to unbiasedness of E (Y |X ), does not imply unbiased-

ness of E (Y |X , Z ) (see also the counter example described in section 6.6).

Unfortunately, just like unbiasedness, all causality conditions treated in this chapter,

including strong ignorabiliy, cannot be tested empirically without unrealistic additional

assumptions, because, unlike in the examples treated in this chapter, in empirical ap-

plications, the values of the true outcome variables τx are unknown and cannot be esti-

mated. Therefore, these causality conditions cannot be used for covariate selection (see

also Rem. 7.36). Nevertheless, these causality conditions are of theoretical interest, be-

cause they are implied by other causality conditions that are empirically testable (see

chs. 8 to ??).
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Table 7.6. Implication relations among causality conditions for E X=x(Y |Z ) and E(Y |X , Z )

τ x
⊢

1 X
=

x
|

Z

τ x
⊥⊥

1 X
=

x
|

Z

τ x
⊢

X
|

Z

τ x
⊥⊥

X
|

Z

∀
x

:
τ x

⊢
1 X

=
x
|

Z

∀
x

:
τ x

⊥⊥
1 X

=
x
|

Z

τ
⊢

X
|

Z

∀
x

:
τ x

⊥⊥
X
|

Z

τ
⊥⊥

X
|

Z

τx ⊢ 1X=x | Z ⇔

τx ⊥⊥1X=x | Z ⇒ ⇔

τx ⊢X | Z ⇒ ⇔

τx ⊥⊥X | Z ⇒ ⇒ ⇒ ⇔

∀x : τx ⊢ 1X=x | Z ⇒ ⇔

∀x : τx ⊥⊥1X=x | Z ⇒ ⇒ ⇒ ⇔

τ⊢X | Z ⇒ ⇒ ⇒ ⇔

∀x : τx ⊥⊥X | Z ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇔

τ⊥⊥X | Z ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇔

Note: An entry ⇒ (⇔) means that the condition in the row implies (is equivalent to) the con-

dition in the column, provided that the Assumptions 6.1 hold. The symbols involving ⊢ and

⊥⊥ are explained in Box 7.1. Presuming P-uniqueness of τx and that Z is a covariate of X , the

first four conditions imply unbiasedness of E X=x(Y |Z ) and the last five imply unbiasedness of

E(Y |X , Z ), provided that P-uniqueness of τx holds for all x ∈X (Ω).

7.6 Proofs

Proof of Lemma 7.4

For any σ-algebra C ⊂A ,

1 =
P

P(X ∈Ω
′
X |C ) =

P
P(X=x |C )+P(X 6=x |C ).

Therefore,

P(X 6=x |C ) =
P

1−P(X=x |C ). (7.75)

Hence,

P(X 6=x |W, Z ) =
P

1−P(X=x |W, Z ) [(7.75) with C =σ(W, Z )]

=
P

1−P(X=x |Z ) [(a)]

=
P

P(X 6=x |Z ). [(7.75) with C =σ(Z )]

According to SN-Remark 16.27, in conjunction with (a), this equation is equivalent to (b), because

P(X=x |W, Z ) =
P

P(1X=x=1 |W, Z )

P(X 6=x |W, Z ) =
P

P(1X=x=0 |W, Z )

P(X=x |Z ) =
P

P(1X=x=1 |Z )
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P(X 6=x |Z ) =
P

P(1X=x=0 |Z ).

These equations follow from the definitions of these Z -conditional probabilities as the Z -conditional

probabilities of the events

A = {X=x } = {1X=x=1} = {ω ∈ Ω: X (ω) = x}

and

Ac
= {X 6=x } = {1X=x=0} = {ω ∈ Ω: X (ω) 6= x}

(see SN-Rem. 10.4).

Proof of Theorem 7.11

(i)

E(τx |1X=x ) =
P

E
(

E(τx |X )
∣

∣1X=x

)

[SN-Box 10.2 (v)]

=
P

E
(

E(τx )
∣

∣1X=x

)

[(7.10)]

=
P

E(τx ). [SN-Box 10.2 (i)]

If we presume that τx is P-unique, then, according to Theorem 6.9, this equation is equivalent to

unbiasedness of E(Y |X=x )

(ii) This proposition immediately follows from (i), (7.16), and Definition 6.11 (iii).

Proof of Theorem 7.18

aa

Proof of Theorem 7.25

(i)

P(X=x |Z ,τx ) =
P

P(X=x |Z )

⇔ 1X=x ⊥⊥τx |Z [Lemma 7.4]

⇒ E(τx |1X=x , Z ) =
P

E(τx |Z ) [τx is P-unique, SN-Rem. 16.35]

⇔ τx ⊢ 1X=x |Z [(6.23)]

⇔ E X=x(Y |Z ) is unbiased. [τx is P-unique, Th. 6.15]

Note that assuming P-uniqueness of τx in the third line is necessary if this proposition is assumed

to hold for all versions τx ∈ E
X=x(Y |CX ) and not only for a fixed version.

(ii) This proposition immediately follows from (i), (7.46), and Definition 6.11 (iii).

Proof of Corollary 7.29

(i) If τx is P-unique, then τx ⊥⊥X |Z ⇒ τx ⊥⊥1X=x |Z follows from SN-Box 16.3 (vi) and τx ⊥⊥X |Z ⇒

τx ⊢ X |Z follows from SN-Rem. 16.35.

(ii) This proposition immediately follows from (i), (7.55), and Definition 6.11 (iii).
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7.7 Exercises

⊲ Exercise 7-1 . Show that P(X=x ) > 0 follows from P-uniqueness of τx .

⊲ Exercise 7-2 Show that P(X=x |CX ) >
P

0 implies P(X=x |Z ) >
P

0, if Z is a covariate of X .

⊲ Exercise 7-3 Prove the implications listed in Table 7.6.

Solutions

⊲ Solution 7-1 In the definition of τx =
P

E X=x(Y |CX ) we assume P(X=x ) > 0 (see Defs. 3.79 and

4.16).

⊲ Solution 7-2 Consider

P(X=x |Z ) =
P

E(1X=x |Z ) [SN-(10.4)]

=
P

E
(

E(1X=x |CX )
∣

∣ Z
)

[SN-Box 10.2 (v)]

=
P

E
(

P(X=x |CX )
∣

∣ Z
)

. [SN-(10.4)]

(7.76)

Hence,

P(X=x |CX ) >
P

0 ⇒ E
(

P(X=x |CX )
∣

∣ Z
)

>
P

0 [(3.48)]

⇒ P(X=x |Z ) >
P

0. [SN-(2.40), (7.76)]

⊲ Solution 7-3

(1) τx ⊥⊥1X=x | Z ⇒ τx ⊢ 1X=x | Z . This is the proposition of Theorem 7.25 (i).

(2) τx ⊢ X | Z ⇒ τx ⊢ 1X=x | Z . This is the proposition of Theorem 7.18 (i).

(3) τx ⊥⊥X | Z ⇒ τx ⊢ 1X=x | Z . This proposition follows from the conjunction of Corollary 7.29

and Theorem 7.18 (i).

(4) (∀x : τx ⊢ 1X=x | Z ) ⇒ (τx ⊢ 1X=x | Z ). This proposition is trivial.

(5) (∀x : τx ⊥⊥1X=x | Z ) ⇒ (τx ⊢ 1X=x | Z ). This proposition immediately follows from (1).

(6) (∀x : τx ⊥⊥X | Z ) ⇒ (τx ⊢ 1X=x | Z ). This proposition immediately follows from (3).

(7) τ ⊢ X | Z ⇒ τx ⊢ 1X=x | Z . This is the proposition of Theorem 7.18 (i).

(8) τ⊥⊥X | Z ⇒ τx ⊢ 1X=x | Z . This proposition is contained in Corollary 7.34.

(9) τx ⊥⊥X | Z ⇒ τx ⊥⊥1X=x | Z . This proposition is contained in the proposition of Corollary

7.29.

(10) (∀x : τx ⊥⊥1X=x | Z ) ⇒ (τx ⊥⊥1X=x | Z ). This proposition is trivial.

(11) (∀x : τx ⊥⊥X | Z ) ⇒ (τx ⊥⊥1X=x | Z ). This proposition immediately follows from (9).

(12) τ⊥⊥X | Z ⇒ (τx ⊥⊥1X=x | Z ). This proposition is contained in Corollary 7.34.

(13) τx ⊥⊥X | Z ⇒ τx ⊢ X | Z . This proposition is contained in Corollary 7.29.

(14) (∀x : τx ⊥⊥X | Z ) ⇒ τx ⊢ X | Z . This proposition immediately follows from (13).

(15) τ⊢ X |Z ⇒ τx ⊢ X |Z . This proposition immediately follows from the definition of τ⊢ X |Z .

(16) (∀x : τx ⊥⊥X | Z ) ⇒ τx ⊢ X | Z . This proposition immediately follows from (13).

(17) τ⊥⊥X | Z ⇒ τx ⊢ X | Z . This proposition from Corollaries 7.34 and 7.29.

(18) (∀x : τx ⊥⊥X | Z ) ⇒ τx ⊥⊥X | Z . This proposition is trivial.

(19) τ⊥⊥X | Z ⇒ τx ⊥⊥X | Z . This proposition is contained in Corollary 7.34.

(20) (∀x : τx ⊥⊥1X=x | Z ) ⇒ (∀x : τx ⊢ 1X=x | Z ). This is the proposition of Theorem 7.25.
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(21) τ⊢ X | Z ⇒ (∀x : τx ⊢ 1X=x | Z ). This proposition is contained in Proposition (7.33).

(22) (∀x : τx ⊥⊥X | Z ) ⇒ (∀x : τx ⊢ 1X=x | Z ). This is the proposition of Corollary 7.29 (ii).

(23) τ⊥⊥X |Z ⇒ (∀x : τx ⊢ 1X=x |Z ). This proposition follows from Corollaries 7.34 and 7.29 (ii).

(24) (∀x : τx ⊥⊥X | Z ) ⇒ (∀x : τx ⊥⊥1X=x | Z ). This is the proposition of Corollary 7.29 (ii).

(25) τ⊥⊥X | Z ⇒ (∀x : τx ⊥⊥1X=x | Z ). This proposition is contained in Corollary 7.34.

(26) (∀x : τx ⊥⊥X | Z ) ⇒ τ ⊢ X | Z . This proposition follows from Corollary 7.29 (ii) and Proposi-

tion (7.33).

(27) τ⊥⊥X | Z ⇒ τ ⊢ X | Z . This proposition follows from Corollaries 7.34 and 7.29 (ii).

(28) τ⊥⊥X | Z ⇒ (∀x : τx ⊥⊥X | Z ). This proposition is contained in Corollary 7.34.





Chapter 8

Fisher Conditions

In chapter 6, we defined unbiasedness of the conditional expectation values E (Y |X=x)

and E (Y |X=x , Z=z), as well as unbiasedness of the conditional expectations E (Y |X ),

E X=x(Y |Z ), and E (Y |X , Z ). These kinds of unbiasedness constitute a first kind of causal-

ity conditions. For example, if P (X=x),P (X=x ′) > 0 and E (Y |X=x) as well as E (Y |X=x ′)

are unbiased, then the prima facie effect PFExx ′ = E (Y |X=x)−E (Y |X=x ′) is unbiased

and identical to the causal average total effect ATE xx ′ (see Cor. 6.23). Therefore, under

these assumptions, an estimate of PFExx ′ is also an estimate of the ATE xx ′. Similarly,

if P (X=x, Z=z), P (X=x ′, Z=z) > 0, and E (Y |X=x , Z=z) as well as E (Y |X=x ′, Z=z) are

unbiased, then the (Z=z)-conditional prima facie effect PFEZ ; xx ′(z) = E (Y |X=x, Z=z) −

E (Y |X=x ′, Z=z) is unbiased, and PFEZ ;xx ′ (z) is identical to CTE Z ; xx ′(z), the causal (Z=z)-

conditional total effect (see Cor. 6.34).

In chapter 7, we treated some other conditions that imply unbiasedness of the condi-

tional expectation values E (Y |X=x) and E (Y |X=x, Z=z), and of the conditional expecta-

tions E (Y |X ), E X=x(Y |Z ) and E (Y |X , Z ). However, these conditions as well as unbiased-

ness itself cannot be tested empirically. This implies that none of these conditions can be

used for covariate selection. Furthermore, unbiasedness can be accidental in the sense

that it may hold for E (Y |X ) but not for E (Y |X , Z ), where Z is a covariate of X . This also

applies to Rosenbaum and Rubin’s strong ignorability. This is one of the reasons why, in

this chapter, we study other causality conditions that are less volatile.

8.1 Fisher Conditions

The conditions to be treated in this section [see Eqs. (8.1) to (8.4)] can be created by

randomized assignment of the unit to one of several treatment conditions that are rep-

resented by the values x of X . This class of conditions will be referred to as the Fisher

conditions (for total effects). This name is chosen to acknowledge the contributions of

Sir R. A. Fisher to understanding the relevance of the design technique of randomization

for causal inference (see, e. g., Fisher, 1925/1946). In contrast to the causality conditions

treated in the previous chapters, the Fisher conditions are empirically testable. Further-

more, they are not accidental in the sense described above. Finally, they may also hold if X

is a continuous random variable, whereas all causality conditions treated so far and even

the true outcome variables are not defined if X is continuous.
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8.1.1 Independence of CX and X

In this section and in other parts of the chapter and the book, we will often refer to the

following assumptions and notation.

Notation and Assumptions 8.1

Let
(

(Ω,A,P ), (Ft , t ∈T ), X ,Y
)

be a causality space, let CX be a global potential con-

founder of X , and let x ∈Ω′
X be a value of X .

Note that in this set of assumptions we neither assume that X is discrete nor that Y is

numerical. Later, we will add these assumptions when they are necessary to prove some

propositions.

Remark 8.2 (Independence of CX and X if X is Discrete) If the Assumptions 8.1 hold, then,

according to Lemma 7.4, P (X=x |CX ) =
P

P (X=x) is equivalent to independence of CX and

1X=x , that is,

CX ⊥⊥1X=x ⇔ P (X=x |CX ) =
P

P (X=x). (8.1)

Furthermore, if we additionally assume that X is discrete, then, according to SN-Theorem

16.26 and SN-Remark 16.27,

CX ⊥⊥X ⇔ ∀x ∈X (Ω) : P (X=x |CX ) =
P

P (X=x). (8.2)

If X is discrete with P (X=x) > 0, for all x ∈X (Ω), then CX ⊥⊥X implies τ⊥⊥X (see Th. 8.14),

and with it all causality conditions that follow from τ⊥⊥X (see Table 7.5). ⊳

Remark 8.3 (Continuous X ) Note, however, that CX ⊥⊥X is also defined and may hold if

X is not discrete [see Def. 7.1 (i)]. In this case, under the Assumptions 8.1, CX ⊥⊥X is still

a causality condition. It guarantees that E (Y |X ) describes a causal dependence of Y on

X , because CX ⊥⊥X implies that the distributions of all potential confounders do not de-

pend on X . For example, if W is a discrete potential confounder of X , then CX ⊥⊥X implies

W ⊥⊥X , which is equivalent to

P (W =w |X ) =
P

P (W =w), ∀w ∈W (Ω)

(see again SN-Th. 16.26 and SN-Rem. 16.27). More general and in more formal terms,

CX ⊥⊥X is equivalent to PW ∈P W |X , for all CX -measurable random variables W . This

means, for each potential confounder W , the distribution PW of W is also a version of the

X -conditional distribution of W (see SN-Th. 17.45 and SN-Rem. 17.46). Hence, we may

call CX ⊥⊥X the ceteris distributionibus paribus clause. ⊳

8.1.2 Z -Conditional Independence of CX and X

In this section and in other parts of the chapter and the book, we will also often refer to the

following assumptions and notation. Compared to the Assumptions 8.1 we just add that Z

denotes a (possibly multivariate) covariate of X .
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Notation and Assumptions 8.4

Let
(

(Ω,A,P ), (Ft , t ∈T ), X ,Y
)

be a causality space, let CX be a global potential con-

founder of X , let x ∈Ω′
X be a value of X , and let Z be a covariate of X with value space

(Ω′
Z ,A ′

Z ).

We denote Z -conditional independence of CX and X by CX ⊥⊥X |Z [see Def. 7.1 (ii)]. For

details on conditional independence see SN-chapter 16. Here, we review some properties

of conditional independence in the case in which X is discrete.

Remark 8.5 (Z -Conditional Independence of CX and a Discrete X ) If X is discrete, then,

under the Assumptions 8.4, the conditional versions of Propositions (8.1) and (8.2) are

CX ⊥⊥1X=x | Z ⇔ P (X=x |CX , Z ) =
P

P (X=x |Z ) (8.3)

(see Lemma 7.4) and

CX ⊥⊥X |Z ⇔ ∀x ∈X (Ω) : P (X=x |CX , Z ) =
P

P (X=x |Z ) (8.4)

(see SN-Theorem 16.26 and SN-Remark 16.27), respectively. Note that (8.1) is a special case

of (8.3) for Z being a constant mapping, that is, for Z (ω)= const, for all ω ∈Ω. For the same

reason (8.2) is a special case of (8.4).

According to Assumptions 8.4, Z is a covariate of X . This implies that σ(Z ) ⊂ σ(CX )

holds for theσ-algebras generated by these two random variables (see Def. 4.4 and Rem. 4.9),

and that σ(CX ) =σ(CX , Z ). Therefore,

P (X=x |CX , Z ) =
P

P (X=x |CX ) (8.5)

(see SN-sections 2.3.2 and 10.1). Hence, if X is discrete, then

CX ⊥⊥1X=x |Z ⇔ P (X=x |CX ) =
P

P (X=x |Z ) (8.6)

and

CX ⊥⊥X |Z ⇔ ∀x ∈X (Ω) : P (X=x |CX ) =
P

P (X=x |Z ). (8.7)

As will be shown in Theorem 8.21, CX ⊥⊥X |Z implies τ⊥⊥ X | Z (strong ignorability), and

with it all other causality conditions that follow from τ⊥⊥X | Z (see Table 7.6). ⊳

Remark 8.6 (Randomized Assignment of a Unit to a Treatment) Because we assume that

Z is CX -measurable, CX ⊥⊥X implies CX ⊥⊥X |Z [see Prop. (7.7) and SN-Box 16.2 (ix)]. As

already mentioned, CX ⊥⊥X is created by randomized assignment (e. g., via a coin flip) of

a unit to a treatment, because, (a) by definition of randomized assignment, X determinis-

tically depends on the coin flip whose outcome does not depend on CX , and (b) a global

potential confounder CX is defined such that it is a random variable that cannot be af-

fected by the treatment variable X (see section 4.1). ⊳

Remark 8.7 (Z -Conditional Randomization) Also note that we can conduct experiments

in which we create CX ⊥⊥X |Z but not CX ⊥⊥X . For example, Z -conditional independence

of X and the global potential confounder CX may be created via Z -conditional random-

ization, where assignment to treatment is arranged such that the conditional probabilities

P (X=x |Z=z) differ for different values z of Z , but CX ⊥⊥X |Z still holds. A numerical ex-

ample has already been presented in Table 6.3. ⊳
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Remark 8.8 (Falsifiability of the Fisher Conditions) The Fisher conditions are empirically

falsifiable. More specifically, if W is measurable with respect to CX , then CX ⊥⊥X implies

W ⊥⊥X (see Exercise 8-1), which is a shortcut for

P (X=x |W ) =
P

P (X=x) ∀x ∈X (Ω) . (8.8)

Hence, in order to test CX ⊥⊥X , we simply have to select a CX -measurable random variable

W and see if Equation (8.8) holds. If Equation (8.8) does not hold, then we can conclude

that CX ⊥⊥X does not hold as well.

Similarly, if W is measurable with respect to CX , then CX ⊥⊥X | Z implies W ⊥⊥X | Z ,

which is a shortcut for

P (X=x |Z ,W ) =
P

P (X=x |Z ), ∀x ∈X (Ω) . (8.9)

Therefore, in order to test CX ⊥⊥X | Z , we can select a CX -measurable random variable W

and see if Equation (8.9) holds. If it does not hold, then we can conclude that CX ⊥⊥X | Z

does not hold as well. In empirical applications such tests of independence or conditional

independence can be conducted, for example, via logistic regression analysis. ⊳

Example 8.9 (First Examples) A first example of independence of the cause X and a

global potential confounder CX has already been presented in Table 6.2 (p. 139). Further-

more, Table 6.3 (p. 140) displays an example for Z -conditional independence of CX and X .

In both examples, U takes the role of a global potential confounder CX . In section 8.3 we

will treat several examples in more detail. ⊳

Remark 8.10 (Continuous X ) Again, note that CX ⊥⊥X |Z is also defined and may hold if

X is not discrete. In this case, CX ⊥⊥X |Z is still a causality condition. It guarantees that

E (Y |X , Z ) describes a causal dependence of Y on X , for reasons that are similar to those

mentioned for CX ⊥⊥X . For example, if W is a discrete potential confounder of X , then

CX ⊥⊥X |Z implies W ⊥⊥X |Z , which is equivalent to

P (W =w |X , Z ) =
P

P (W =w |Z ), ∀w ∈W (Ω)

(see again SN-Th. 16.26 and SN-Rem. 16.27). ⊳

8.2 Implications of the Fisher Conditions

8.2.1 Implications of Independence of CX and X

Now we return to the assumptions that we used in the previous chapters. In particular we

presume that X is discrete with P (X=x) > 0 for all x ∈X (Ω). In the following theorem we

summarize the implications of CX ⊥⊥1X=x , which is equivalent to

P (X=x |CX ) =
P

P (X=x) (8.10)

(see Lemma 7.4).
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Theorem 8.11 (Implications of CX ⊥⊥1X=x )

Let the Assumptions 5.1 hold. Then CX ⊥⊥1X=x implies:

(i) τx is P-unique.

(ii) τx ⊥⊥1X=x .

(iii) τx ⊢ 1X=x .

(iv) E (Y |X=x) is unbiased.

If the Assumptions 5.1 hold and Z is a covariate of X , then CX ⊥⊥1X=x implies:

(v) CX ⊥⊥1X=x |Z .

(vi) τx ⊥⊥1X=x | Z .

(vii) τx ⊢ 1X=x |Z .

(viii) E X=x(Y |Z ) is unbiased.

(ix) E (Y |X=x, Z=z) is unbiased, if P (X=x, Z=z) > 0.

(Proof p. 195)

Remark 8.12 (CX ⊥⊥1X=x Implies That τx is P-Unique) Note that CX ⊥⊥1X=x is the first cau-

sality condition implying that τx is P-unique. ⊳

Remark 8.13 (CX ⊥⊥1X=x Implies CX ⊥⊥1X=x |Z ) Also note that CX ⊥⊥1X=x is the first causal-

ity condition implying CX ⊥⊥1X=x |Z . Hence, CX ⊥⊥1X=x does not only imply that E (Y |X=x)

is unbiased, but it also implies unbiasedness of E X=x(Y |Z ), if Z is a covariate of X (and

therefore is CX -measurable). ⊳

In Theorem 8.11 we considered the implications of independence of CX and the indi-

cator 1X=x for a single value x of X . In the following theorem, we consider the implications

of independence of CX and X , which, if X is discrete, is equivalent to

∀x ∈X (Ω) : CX ⊥⊥1X=x .

This in turn implies that also all propositions listed in Theorem 8.11 hold for all values x

of X . In the following theorem we list some additional propositions that are not already

included in Theorem 8.11.

Theorem 8.14 (Implications of CX ⊥⊥X )

Let the Assumptions 6.1 hold. Then CX ⊥⊥X implies:

(i) For all x ∈X (Ω): CX ⊥⊥1X=x .

(ii) For all x ∈X (Ω): τx ⊥⊥X .

(iii) τ⊥⊥X , where τ := (τ0,τ1, . . . ,τJ ).

(iv) For all x ∈X (Ω): τx ⊢ X .

(v) E (Y |X ) is unbiased.

If the Assumptions 6.1 hold and Z is a covariate of X , then CX ⊥⊥X implies:

(vi) CX ⊥⊥X |Z .

(vii) For all x ∈X (Ω): τx ⊥⊥X |Z .

(viii) τ⊥⊥X |Z .

(ix) For all x ∈X (Ω): τx ⊢ X |Z .
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(x) E (Y |X , Z ) is unbiased.

(Proof p. 196)

Remark 8.15 (CX ⊥⊥X Implies That all τx are P-Unique) Note that CX ⊥⊥X implies that all

τx , x ∈X (Ω), are P-unique. ⊳

Remark 8.16 (CX ⊥⊥X Implies CX ⊥⊥X |Z ) Also note that CX ⊥⊥X implies CX ⊥⊥X | Z , be-

cause Z is CX -measurable. Hence, CX ⊥⊥X does not only imply that E (Y |X ) is unbiased,

but it also implies unbiasedness of E (Y |X , Z ). ⊳

8.2.2 Unbiasedness of the Prima Facie Effects

The following corollary is an immediate implication of Theorem 8.14. In this corollary we

specify a condition under which the prima facie effect

PFExx ′ = E (Y |X=x)−E (Y |X=x ′) (8.11)

is unbiased. Remember, if τx and τx ′ are P-unique, then δxx ′ = τx −τx ′ is a true total effect

variable [see Def. 5.2 (iii)] and

ATE xx ′ = E (δxx ′ ) = E (τx)−E (τx ′) (8.12)

is the causal average total effect (see Def. 5.8).

Corollary 8.17 (Unbiasedness of Prima Facie Effects)

Let the Assumptions 5.1 hold. Then CX ⊥⊥X implies

PFExx ′ = ATE xx ′. (8.13)

Remark 8.18 (Identification of ATE xx ′) Hence, if CX ⊥⊥X , then Equations (8.11) and (8.13)

imply that the causal average total effect of x compared to x ′ is identical to the differ-

ence between the two conditional expectation values E (Y |X=x) and E (Y |X=x ′), that is,

if CX ⊥⊥X , then

ATE xx ′ = E (Y |X=x)−E (Y |X=x ′) . (8.14)

In this context we also say that the ATE xx ′ is identified by the difference between E (Y |X=x)

and E (Y |X=x ′). Note that, in a t-test for independent observations, we test the hypoth-

esis E (Y |X=x)−E (Y |X=x ′) = 0. Therefore, if CX ⊥⊥X , then we also test the hypothesis

ATE xx ′ = 0. ⊳

8.2.3 Implications of Z -Conditional Independence of CX and X

In the last subsection we studied the implications of CX ⊥⊥X . Now we turn to the im-

plications of CX ⊥⊥X | Z , assuming that Z is covariate of X , which implies that Z is CX -

measurable. Remember, if Z is CX -measurable, then CX ⊥⊥X implies CX ⊥⊥X | Z , but not

vice versa [see Prop. (7.7)]. Hence, if CX ⊥⊥X | Z holds, then CX ⊥⊥X does not necessarily
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hold. In fact, we may conduct an experiment in such a way that CX ⊥⊥X | Z holds but not

CX ⊥⊥X (see Table 6.3 for a simple example).

Theorem 8.19 summarizes the implications of CX ⊥⊥1X=x | Z , that is, of

P (X=x |CX ) =
P

P (X=x |Z ), (8.15)

where we presume that Z is CX -measurable, so that P (X=x |CX ) =
P

P (X=x |CX , Z ) (see SN-

Rem. 10.4).

Theorem 8.19 (Implications of CX ⊥⊥1X=x |Z )

Let the Assumptions 5.1 hold and let Z be a covariate of X . Then CX ⊥⊥1X=x |Z implies:

(i) τx ⊥⊥1X=x |Z .

(ii) τx ⊢ 1X=x |Z .

(Proof p. 196)

Hence, under the assumptions of Theorem 8.19,

CX ⊥⊥1X=x | Z ⇒ τx ⊥⊥1X=x | Z ⇒ τx ⊢ 1X=x |Z . (8.16)

The following corollary is an immediate implication of Theorem 8.19 (i) and Theorem

7.25 (i).

Corollary 8.20 (Unbiasedness of E X=x(Y |Z ))

Let the Assumptions 5.1 hold, let Z be a covariate of X , and assume CX ⊥⊥1X=x |Z . Then:

(i) If τx is P-unique, then E X=x(Y |Z ) is unbiased.

(ii) If z ∈Ω′
Z , P (X=x, Z=z) > 0, and τx is P Z=z-unique, then E (Y |X=x, Z=z) is un-

biased.

In Theorem 8.19 we considered the implications of Z -conditional independence of CX

and the indicator 1X=x for a single value x of X . In the following theorem, we turn to the

implications of Z -conditional independence of CX and X , which is equivalent to

∀x ∈X (Ω) : CX ⊥⊥1X=x | Z .

This in turn implies that also all propositions listed in Theorem 8.19 hold for all values x

of X . In the following theorem we list some additional propositions that are not already

included in Theorem 8.19.

Theorem 8.21 (Implications of CX ⊥⊥X |Z )

Let the Assumptions 6.1 hold, let Z be a covariate of X , and define τ := (τ0,τ1, . . . ,τJ ).

Then CX ⊥⊥X |Z implies:

(i) For all x ∈X (Ω): CX ⊥⊥1X=x |Z .

(ii) For all x ∈X (Ω): τx ⊥⊥X |Z .

(iii) τ⊥⊥X |Z .

(iv) τ ⊢ X |Z .

(Proof p. 196)
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The following corollary immediately follows from Theorem 8.21 (i), Corollary 8.20, and

Definition 6.11 (iii).

Corollary 8.22 (Unbiasedness of E (Y |X , Z ))

Let the Assumptions 6.1 hold, let Z be a covariate of X , and assume CX ⊥⊥X | Z . Then:

(i) If τx is P-unique, then E X=x(Y |Z ) is unbiased.

(ii) If, for all x ∈X (Ω), τx is P-unique, then E (Y |X , Z ) is unbiased.

8.2.4 Unbiasedness of a Z -Conditional Prima Facie Effect Function

The following corollary is an immediate implication of Theorem 8.21. In this corollary we

specify a condition under which a Z -conditional prima facie effect variable

PFEZ ;xx ′ (Z ) =
P

E X=x(Y |Z )−E X =x ′

(Y |Z ) (8.17)

is unbiased. Remember that CTE Z ; xx ′(Z ) denotes E (δxx ′ | Z ) =
P

E (τx |Z )−E (τx ′ |Z ), a causal

Z -conditional total effect variable [see Def. 5.17 (iii)].

Corollary 8.23 (Unbiasedness of a Z -Conditional Prima Facie Effect Function)

Let the Assumptions 5.1 hold and let Z be a covariate of X .

(i) If τx and τx ′ are P-unique, then CX ⊥⊥X |Z implies

PFEZ ; xx ′(Z ) =
P

CTE Z ;xx ′(Z ). (8.18)

(ii) If z ∈Ω′
Z such that P (X=x, Z=z),P (X=x ′, Z=z) > 0 and τx , τx ′ are P Z=z-unique,

then CX ⊥⊥X | Z implies

PFEZ ; xx ′(z) = CTE Z ; xx ′(z). (8.19)

(Proof p. 197)

Remark 8.24 (Identification of CTE Z ;xx ′(Z )) Hence, if CX ⊥⊥X |Z and the true outcome

variables τx and τx ′ are P-unique, then Equations (8.17) and (8.18) imply that the causal

Z -conditional total effect variable is almost surely identical to the difference between the

two conditional expectations E X=x(Y |Z ) and E X =x ′

(Y |Z ), that is,

CTE Z ; xx ′(Z ) =
P

E X=x(Y |Z )−E X =x ′

(Y |Z ) . (8.20)

In this context we also say that the effect variable CTE Z ; xx ′(Z ) is identified by the difference

between E X=x(Y |Z ) and E X =x ′

(Y |Z ). ⊳

Remark 8.25 (Identification of CTE Z ;xx ′(z)) Under the assumptions mentioned in Corol-

lary 8.23 (ii), the causal (Z=z )-conditional total effect is identical to the difference between

the two conditional expectation values E (Y |X=x, Z=z) and E (Y |X=x ′, Z=z), that is,

CTE Z ; xx ′(z) = E (Y |X=x, Z=z)−E (Y |X=x ′, Z=z) . (8.21)

In this context we also say that the conditional effect CTE Z ; xx ′(z) is identified by the differ-

ence between E (Y |X=x, Z=z) and E (Y |X=x ′, Z=z). ⊳
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Remark 8.26 (Conditional Randomization) The condition CX ⊥⊥X |Z that, together with

P-uniqueness of the true outcome variables τx , implies unbiasedness of E (Y |X , Z ), can

be created in an experiment either by

(a) randomized assignment of the sampled unit to a treatment condition (represented

by a value x of X ) [see SN-Box 16.3 (ix)]

(b) randomized assignment of the unit to a treatment condition conditional on the val-

ues z of a covariate Z .

However, CX ⊥⊥X |Z may also hold if the (possibly multivariate) covariate Z is selected in

such a way that CX ⊥⊥X |Z holds. ⊳

Remark 8.27 (Continuous X ) It should be emphasized that CX ⊥⊥X and CX ⊥⊥X |Z may

also hold if X is a continuous random variable. If CX ⊥⊥X holds, then E (Y |X ) and E (Y |X , Z )

describe the causal total dependency of Y on X and of Y on X given Z , respectively. If

X is continuous, then the theory based on true outcome variables does not apply any

more, because it rests on the assumption that the values x of X have a nonzero proba-

bility. This assumption does not hold if X is a continuous random variable. Nevertheless,

we can meaningfully talk about causal effects. For example, if

E (Y |X ) =
P
α0 +α1 ·X , α0,α1 ∈R, (8.22)

and CX ⊥⊥X hold, then we may define α1 to be the causal total effect of X on Y .

Similarly, if CX ⊥⊥X |Z holds for a covariate Z with value space (Ω′
Z ,A ′

Z ) and there are

measurable functions g0, g1 : Ω′
Z →B with g−1

0 (B)⊂A
′

Z and g−1
1 (B) ⊂A

′
Z such that

E (Y |X , Z ) =
P

g0(Z )+ g1(Z ) ·X , (8.23)

then we may define g1 to be the causal Z-conditional total effect function of X on Y and

the composition g1(Z ) to be the corresponding causal Z-conditional total effect variable.

Hence, the causality conditions CX ⊥⊥X and CX ⊥⊥X |Z are relevant beyond the true out-

come theory of causal effects. ⊳

8.3 Examples

Now we illustrate the causality conditions treated in this chapter by some examples. In

chapter 3 we introduced a first example with independence of X and a global potential

confounder CX (see Table 3.1, p. 44). A second example has already been presented in

chapter 6 (see Table 6.2, p. 139), and in the same chapter , there is also an example with

Z -conditional independence of CX and X (see Table 6.3, p. 140). In all these examples, the

observational-unit variable U is a global potential confounder, that is, CX =U , implying

E (Y |X ,CX ) =
P

E (Y |X ,U ) (8.24)

and

P (X=1 |CX ) =
P

P (X=1 |U ). (8.25)

In this equation, P (X=1 |U ) denotes the individual treatment probability function, whose

values are the individual treatment probabilities P (X=1 |U=u) (see Remarks 3.58 and
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3.67). If the values u of U represent the observational units at the onset of treatment, then

CX = U will hold in empirical applications if (a) no fallible covariate is assessed and (b)

there is no other variable that is simultaneous to the treatment variable X (such as a sec-

ond treatment variable).

Example 8.28 (Independence of X and U ) Table 6.2 (p. 139) displays an example in which

CX ⊥⊥X holds, where CX = U . In this table it is easily seen that the individual treatment

probabilities are the same for all units, that is,

P (X=1 |U ) = P (X=1) =
3

4
.

U ⊥⊥X implies that X and all random variables that are measurable with respect to U are

independent.

In the same example, CX ⊥⊥X |Z holds as well, where Z = sex, because the (Z=z)-

conditional treatment probabilities also do not depend on the units, that is,

P (X=1 |U , Z ) = P (X=1 |Z ) = P (X=1) =
3

4
.

U ⊥⊥X | Z implies that X and all random variables that are measurable with respect to U

are also Z -conditionally independent. This is no coincidence but an implication of the fact

that U ⊥⊥X and that measurability of Z with respect to U implies U ⊥⊥X | Z [see Prop. (7.7)

or SN-Box 16.3 (ix)], which in turn implies Z -conditional independence of X and all ran-

dom variables that are measurable with respect to U [see SN-Box 16.3 (vi)].

If CX =U , then, according to Theorem 8.14 (v), independence of U and X implies un-

biasedness of the conditional expectation E (Y |X ). Furthermore, because in this example

P (X =0) > 0 and P (X =1) > 0, independence of X and U also implies unbiasedness of the

conditional expectation values E (Y |X =0) and E (Y |X =1) [see Th. 8.11 (iv)] as well as un-

biasedness of the prima facie effect

PFE10 := E (Y |X =1)−E (Y |X =0) ≈ 102.333−92.333 ≈ 10

(see Cor. 8.17). In other words, PFE10 = ATE 10.

As already stated above, U ⊥⊥X | Z holds as well, where Z = sex. Because CX =U and

Z is U -measurable, according to Theorem 8.14 (x), the conditional expectation E (Y |X , Z )

is unbiased. Furthermore, because P (X =0, Z=z), P (X =1, Z=z) > 0 for both values z of

Z , this implies unbiasedness of all conditional expectation values E (Y |X=x, Z=z) [see

Th. 8.11 (ix)], and that the (Z=z)-conditional prima facie effects

PFEZ ;10(m) = E (Y |X=1, Z=m)−E (Y |X=0, Z=m) ≈ 92.50−83.00 ≈ 9.50

and

PFEZ ;10( f ) = E (Y |X=1, Z= f )−E (Y |X=0, Z= f ) = 122−111 = 11

are unbiased [see Cor. 8.23 (ii)].

Also note that

PFE10 = E [PFEZ ;10(Z )] = 9.50 ·
4

6
+11 ·

2

6
= 10.

This means that the prima facie effect is the expectation of the corresponding conditional

prima facie effects. This property, is no coincidence. Instead it follows from CX ⊥⊥X (see

SN-Th. 15.14 and SN-Rem. 15.17). ⊳
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Example 8.29 (Z -Conditional Independence of X and U ) In Table 6.3 (see p. 140) we al-

ready treated an example in which CX ⊥⊥X | Z holds, whereas CX ⊥⊥X does not. Again,

CX =U . As is easily seen in this table, the individual treatment probabilities are the same

for all units within each of the two subsets of males and females, that is,

P (X=1 |U=u, Z=m) = P (X=1 |Z=m) =
3

4
, for each male unit u

and

P (X=1 |U=u, Z= f ) = P (X=1 |Z= f ) =
1

4
, for each female unit u.

Hence, the individual treatment probabilities are 3/4 for males and 1/4 for females. These

individual treatment probabilities differ for different values of the covariate Z , but they are

invariant given a value of the covariate Z . Note that the conditional treatment probability

P (X=1|Z=m) = 3/4 is also the individual treatment probability P (X=1|U=u) for the male

units u1 to u4, and the conditional treatment probability P (X=1 |Z= f ) = 1/4 is also the

individual treatment probability P (X=1 |U=u) for the female units u5 and u6. This follows

from

P (X =1 |U ) = E [P (X =1 |U , Z ) |U ] [SN-Box 10.2 (v)]

= E [P (X =1 |Z ) |U ] [P (X =1 |U , Z ) = P (X =1 |Z )]

= P (X =1 |Z ). [SN-Box 10.2 (vii)]

In Table 6.3 (p. 140) there is only Z -conditional independence of U and the treatment

variable X , that is, U ⊥⊥X | Z . Therefore, in this table, the prima facie effect

PFE10 = E (Y |X =1)−E (Y |X =0) ≈ 96.715−99.800 ≈ −3.085

is biased, because the average total effect in this example is ATE 10 = 10 (see Exercise 8-2).

However, the (Z=z)-conditional prima facie effects are unbiased. In fact, they are the same

as in Table 6.2 (see p. 139 and Example 8.28). Hence, we can use the conditional prima

facie effects to compute the average total effect. Remember, if the conditional prima facie

effects are unbiased, that is, if they are equal to the causal conditional total effects, then

the expectation of the conditional prima facie effect variable is equal to the causal average

total effect [see Eq. (6.38)]. In our example, this expectation is,

ATE 10 = E [PFEZ ;10(Z ) ] = PFEZ ;10(m) ·
4

6
+PFEZ ;10( f ) ·

2

6

= 9.50 ·
4

6
+11 ·

2

6
= 10.00.

⊳

8.4 Methodological Conclusions

Now we discuss the conclusions from the theory treated in this chapter for the design and

analysis of experiments and quasi-experiments. Theorems 8.11 and 8.14 are the theoret-

ical foundation of the design technique of randomization and of the analysis of causal
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conditional and causal average total treatment effects in experiments by comparing (un-

adjusted) means between treatment conditions. Theorems 8.19 and 8.21 may also be used

for conditionally randomized experiments for the analysis of causal (Z=z)-conditional to-

tal treatment effects. Together with Equation (6.38) these theorems can also be used for the

analysis of causal average total effects. Finally, Theorems 8.19 and 8.21 can also be used

in (nonrandomized) quasi-experiments for covariate selection and the analysis of causal

conditional and causal average total effects. This will now be explained in more detail.

Remark 8.30 (Randomization) It is well-known at least since (Fisher, 1925/1946) that

randomization plays a crucial role in ruling out biases in comparisons of means. In a

randomized experiment, there is always an observational-unit variable U whose value u

denotes the observational unit that is sampled if the random experiment considered is

actually conducted. The definition of a global potential confounder CX [see Def. 4.4 (ii)]

guarantees that U is measurable with respect to a global potential confounder CX . In fact,

in a simple experiment, in which we do not observe any fallible pretests and in which there

is only one single treatment variable X , the random variable U itself is a global potential

confounder of X . In any case, if X represents a discrete treatment variable, then CX ⊥⊥X

implies

P (X=x |CX ) =
P

P (X=x |U ) =
P

P (X=x), ∀x ∈X (Ω) . (8.26)

The last one of these two equations implies that each unit u has the same probability

P (X=x |U=u) = P (X=x) to be assigned to treatment x.

Remember that we are talking about a single-unit trial. A simple example of such a

single-unit trial consists of sampling a single unit from a set of units, assessing a number

of covariates, assigning the unit (or observing its assignment) to one of the treatment con-

ditions and observing the outcome variable (see ch. 2 for more details and other kinds of

single-unit trials).

Note that Equation (8.26) does not imply that the probabilities P (X=x) are the same

for all treatment conditions x. If, for example, there are two treatment conditions, say 0

and 1, then the two treatment probabilities might be P (X=1) = 1/4 and P (X=0) = 3/4.

However, CX ⊥⊥X implies P (X=1 |U ) = P (X=1), provided, of course, that we consider a

random experiment in which U is CX -measurable. In other words, CX ⊥⊥X implies that the

individual treatment probabilities P (X=x |U=u) are identical between units, and they are

equal to the unconditional treatment probability P (X=x). Hence, in a perfect randomized

experiment we ensure CX ⊥⊥X . This condition implies that the conditional expectation

values E (Y |X=x), x ∈X (Ω), are unbiased (see Ths. 8.11 and 8.14) and that a prima facie

effect E (Y |X=x) − E (Y |X=x ′) is identical to the causal average total effect ATE xx ′ (see

Cor. 8.17).

It is important to note that in a perfect randomized experiment we do not only cre-

ate CX ⊥⊥X but also CX ⊥⊥X | Z for each covariate Z of X (see Th. 8.14). This in turn

implies that each conditional expectation E X=x(Y |Z ), x ∈X (Ω), the conditional expecta-

tion E (Y |X , Z ), and each prima facie effect variable PFEZ ;xx ′ = E X=x(Y |Z )−E X =x ′

(Y |Z ),

x, x ′∈X (Ω), are unbiased (see Cor. 8.23).

⊳

Remark 8.31 (Conditional Randomization) In the single-unit trial of an experiment or

quasi-experiment, in which a unit u is sampled and a value z of the covariate Z is assessed
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prior to treatment, conditional randomization refers to randomized assignment of the unit

u to treatment condition x with probability P (X=x |Z=z), where x = 0,1, . . . , J . In this pro-

cedure we have to make sure that treatment assignment only depends on the values z of

Z , but not on any other attribute of the units or any other covariate. In more formal terms,

we create P (X=x |CX ) =
P

P (X=x |Z ) for all values x of X .

We distinguish two cases. First, if Z is measured without measurement error, each value

z of Z will represent a subset of observational units. Table 6.3 (p. 140) contains an example

with conditional independence of units and treatments given males and given females.

Second, if the covariate Z is measured with error, that is, Z= f (U )+ ε, then a value z of

Z does not represent a subset of units, because z is not only determined by u but also

by other factors and/or chance. Nevertheless, treatment can be assigned such that the

treatment probability depends on the observed score z, and not on the attribute f (U ) of

the unit itself. In both cases, namely Z= f (U ) and Z= f (U )+ ε, conditional randomized

assignment of a unit u to one of the treatment conditions given a value z of Z secures that

a global potential confounder CX satisfies CX ⊥⊥X |Z , that is, Z -conditional independence

of CX and X .

Conditional random assignment allows that units with different values z1 and z2 of Z

have different probabilities to be assigned to treatment x. Thus it is possible to assign

a unit for which we observe a covariate value z1 (e. g., high need) to treatment x with a

higher probability than a unit with covariate value z2 (e. g., low need). In this way we may

respect ethical and/or other requirements without compromising the validity of causal in-

ference. Remember, unconditional randomized assignment means that each unit has the

same probability of being assigned to a given treatment, regardless of his or her need (and

any other attribute of the unit).

For simplicity, suppose there are just two treatment conditions, X=0 (control) and X=1

(treatment). Conditional randomization consists of:

(a) fixing the conditional treatment probabilities P (X=1 |Z=z ) for all values z of the

covariate Z ,

(b) sampling a unit u and assessing the value z of the covariate, and

(c) randomized assignment of the unit with probability P (X=1 |Z=z) to treatment 1.

If, for example, the covariate has three values, say high, medium, and low need, we may

toss a dice and assign a unit with high need to treatment if the dice shows less than six

dots, and assign it to control otherwise. A unit with medium need might be assigned to

treatment if the dice shows less than four dots, and to control otherwise. Finally, a unit

with low need might be assigned to treatment if the dice shows one dot, and to control

otherwise.

If the covariate Z is discrete, then the conditional treatment probabilities P (X=1 |Z=z)

may be fixed in a table by assigning a treatment probability to each value z that seems ap-

propriate with respect to ethical and other requirements. In the example above, these were

the values 5/6 for high need, 3/6 for medium need and 1/6 for low need. If the covariate is

univariate continuous, we may also use a function, such as

P (X=1 |Z ) =
exp(λ0 +λ1 ·Z )

1+exp(λ0 +λ1 ·Z )

with real-valued coefficients λ0 and λ1 that seem appropriate for the experiment consid-

ered.
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If Z is discrete and P (X=x, Z=z),P (X=x ′, Z=z) > 0, then Z -conditional randomiza-

tion implies that the (Z=z)-conditional prima facie effects PFEZ ;xx ′ (z) = E (Y |X=x, Z=z)

−E (Y |X=x ′, Z=z) are identical to the causal conditional total effects given a value z of

the covariate Z . Hence, studying conditional prima facie effects in a perfect conditionally

randomized experiment is tantamount to studying causal conditional total effects. As has

been shown in chapter 5 [see, e. g., Eq. (5.22)], once we know the causal conditional total

effects given the values z of a covariate Z , we can also compute the causal average total

effect. ⊳

Remark 8.32 (Covariate Selection in Quasi-Experiments) Covariate selection is also the

first step in a number of techniques for the analysis of causal conditional and causal av-

erage total effects in quasi-experiments, in which by definition of the quasi-experiment,

the experimenter cannot fix the true treatment probabilities himself. The steps to follow

distinguish different techniques of analysis. By definition, there is no randomization and

no conditional randomization in a quasi-experiment. However, even under initial ran-

domization, systematic attrition of subjects may invalidate the condition X ⊥⊥CX (see,

e. g., Abraham & Russell, 2004; Fichman & Cummings, 2003; Graham & Donaldson, 1993;

Shadish et al., 2002). In this case, we will say that randomization failed and the initially

randomized experiment turned into a quasi-experiment.

In quasi-experiments, selecting the covariates in the covariate vector Z := (Z1, . . . , Zm)

for which we can hope that CX ⊥⊥X |Z holds is a useful strategy in the analysis of causal

conditional and causal average total treatment effects. However, note that there might be

many covariates determining the treatment probabilities. For instance, the severity of the

disorder, knowing about the treatment, and availability of the treatment are candidates for

such covariates. Also note that there is no guarantee that CX ⊥⊥X |Z holds for a specified

(univariate or multivariate) covariate Z . ⊳

Remark 8.33 (Falsifiability) As already mentioned before, in contrast to the causality

conditions treated in chapters 6 and 7, the causality conditions CX ⊥⊥X and CX ⊥⊥X |Z

can be tested in empirical applications, at least in the sense that some consequences of

these conditions can be checked. Falsifiability is important, because otherwise we would

not have any criterion for covariate selection, that is, for deciding whether or not a specific

covariate should be included in the vector Z := (Z1, . . . , Zm) of covariates with respect to

which we hope that CX ⊥⊥X |Z holds.

Let us briefly outline how we can falsify the assumption that CX ⊥⊥X holds. Remember,

if X is discrete, then CX ⊥⊥X , is equivalent to

P (X=x |CX ) =
P

P (X=x), ∀x ∈X (Ω) . (8.27)

This implies that

P (X=x |W ) =
P

P (X=x), ∀x ∈X (Ω) (8.28)

holds for each random variable W that is measurable with respect to CX . Examples for

such random variables W are sex, educational status, but also a fallible pre-test.

Similarly, if X is discrete, then CX ⊥⊥X |Z is equivalent to

P (X=x |CX ) =
P

P (X=x |Z ), ∀x ∈X (Ω) . (8.29)

(Remember that Z denotes a covariate of X , which, by definition, is CX -measurable.) This

equation implies
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P (X=x |W, Z ) =
P

P (X=x |Z ), ∀x ∈X (Ω), (8.30)

for each random variable W that is measurable with respect to CX . Equations (8.28) and

(8.30) are easily tested using standard procedures for the analysis of conditional probabili-

ties such as logistic regression (see, e. g., Agresti, 2007; Bonney, 1987; Green, 2003; Hosmer

& Lemeshow, 2000) or probit regression (see, e. g., McCullagh & Nelder, 1989; Borooah,

2001; Liao, 1994). ⊳

Remark 8.34 (The Covariate Selection Process) If Equation (8.30) does not hold for spec-

ified CX -measurable random variables W and Z , then CX ⊥⊥X |Z cannot hold as well. In

this case we may define Z ∗ := (Z ,W ) and select a new CX -measurable random variable

W ∗, and check if

P (X=x |W ∗, Z ∗) =
P

P (X=x |Z ∗), ∀x ∈X (Ω), (8.31)

holds. This process can be continued as long as there is doubt that

P (X=x |CX ) =
P

P (X=x |Z ∗), ∀x ∈X (Ω), (8.32)

holds. Of course, such a procedure does not guarantee that we find a (possibly multivari-

ate) covariate Z ∗such that Equation (8.32) holds. Instead, in a quasi-experiment, Equation

(8.32) always remains an assumption on which causal inference relies. However, this as-

sumption can always be falsified, which has a positive and a negative side. The negative

side is that we can never be sure that this assumption holds. The positive side is that this

assumption is empirically testable and, in this sense, it is not just a matter of belief. ⊳

8.5 Summary and Conclusions

In chapter 6 we showed that unbiasedness of the conditional or unconditional prima facie

effects is crucial for computing causal conditional and unconditional total effects from

(the empircally estimable) conditional or unconditional prima facie effects. In chapter 7

we treated several causality conditions that imply unbiasedness, which cannot be tested in

empirical applications. The most restrictive of these conditions is Rosenbaum and Rubin’s

strong ignorability. In this chapter, we introduced a first kind of causality conditions that

are empirically falsifiable. These causality conditions are summarized in Box 8.1.

The implication relations among the causality conditions treated in this chapter are

listed in Table 8.1. This table also includes τ⊥⊥X and the strong ignorability condition

τ⊥⊥X |Z that were treated in chapter 7. The implications of these two conditions on other

causality conditions are summarized in the last rows of Table 7.5 and Table 7.6, respec-

tively. Hence, putting these tables together yields long chains of implications. Obviously,

CX ⊥⊥X is the most powerful causality condition. It implies not only unbiasedness of all

E (Y |X=x), E X=x(Y |Z ), x ∈X (Ω), as well as unbiasedness of E (Y |X ) and E (Y |X , Z ), but it

also implies all other conditions treated until now (including those dealt with in ch. 7),

and it even implies that all true outcomes variables are P-unique. In contrast, assum-

ing CX ⊥⊥X |Z , we need the additional assumption that all true outcomes variables are

P-unique in order to derive unbiasedness of all E X=x(Y |Z ), x ∈X (Ω), as well as unbiased-

ness of E (Y |X , Z ).
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Box 8.1 Fisher conditions

Let the Assumptions 8.1 hold.

CX ⊥⊥X Independence of CX and X . If X is discrete, then CX ⊥⊥X is equivalent to

∀x ∈X (Ω) : P(X=x |CX ) =
P

P(X=x ).

It can be created by randomized assignment of the unit sampled to one

of the treatments x. If P(X=x ) > 0 for all values x, then CX ⊥⊥X implies

P-uniqueness of all true outcome variables τx , which is equivalent to

P(X=x |CX ) >
P

0 for all values x. Furthermore, CX ⊥⊥X does not only im-

ply unbiasedness of E(Y |X ) and all E(Y |X=x ), x ∈X (Ω), but it also implies

CX ⊥⊥X | Z , provided that Z is a covariate of X .

Let the Assumptions 8.4 hold and let Z be a covariate of X .

CX ⊥⊥X |Z Z -conditional independence of CX and X . If X is discrete, then CX ⊥⊥X |Z

is equivalent to

∀x ∈X (Ω) : P(X=x |CX ) =
P

P(X=x |Z ).

CX ⊥⊥X |Z follows from CX ⊥⊥X . However, it can also be created by condi-

tional randomized assignment of the unit sampled to treatment condition

x based on the values z of Z . If P(X=x |CX ) >
P

0 holds for all x ∈X (Ω), then

CX ⊥⊥X |Z implies that E(Y |X , Z ) and all E X=x(Y |Z ), x ∈X (Ω), are unbias-

ed. Furthermore, we can try to select the (possibly multivariate) covariate

Z = (Z1, . . . , Zm ) such that CX ⊥⊥X |Z is satisfied.

Randomization and Conditional Randomization in Experiments

In experiments, the condition CX ⊥⊥X can be created by randomized assignment of the

observational unit to one of the treatment conditions represented by a value x of X . Simi-

larly, CX ⊥⊥X |Z can be created by conditional randomized assignment based on a value z

of covariate Z . Outside the randomized experiment, and even in cases in which X does not

denote a treatment variable that is manipulated by an experimenter, CX ⊥⊥X |Z may also

be valid if the covariate Z is carefully selected. In this case, however, there is no guarantee

that this condition will hold.

Falsifiability

Unlike unbiasedness and the other causality conditions treated in chapter 7, indepen-

dence of X and potential confounders as well as Z -conditional independence of X and

potential confounders, are empirically falsifiable. Suppose that X is discrete. In order to

test CX ⊥⊥X , we simply have to select a covariate W and investigate if the conditional prob-

ability P (X=x |W ) is in fact identical to P (X=x) for all values x of X . [Remember, a covari-

ate of X has been defined such that it is measurable with respect to CX (see Rem. 4.9).]

Similarly, if X is discrete and Z is a covariate of X , then we can test if CX ⊥⊥X | Z holds by
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Table 8.1. Implications among causality conditions

τ
⊥⊥

X

C
X
⊥⊥

X

τ
⊥⊥

X
|Z

C
X
⊥⊥

X
|Z

τ⊥⊥X ⇔

CX ⊥⊥X ⇒ ⇔ ⇒ ⇒

τ⊥⊥X |Z ⇔

CX ⊥⊥X |Z ⇒ ⇔

Note: An entry ⇒ (⇔) means that the condition in the row implies (is equivalent to) the condi-

tion in the column, provided that the Assumptions 6.1 hold and Z is a covariate of X .

selecting another covariate W and see if P (X=x |Z ,W ) =
P

P (X=x |Z ) holds for all values x

of X .

Continuous X

It should be emphasized again that CX ⊥⊥X and CX ⊥⊥X |Z may also hold if X is a con-

tinuous random variable. If X is continuous, then the theory of true outcome variables

does not apply any more, because it rests on the assumption that the values x of X have

a nonzero probability. This assumption does not hold if X is continuous. Nevertheless,

we can meaningfully talk about causal dependencies. Hence, the causality conditions

CX ⊥⊥X and CX ⊥⊥X |Z are relevant beyond the true outcome theory of causal effects (see

Rem. 8.27 for more details).

8.6 Proofs

Proof of Theorem 8.11

(i). According to SN-Corollary 14.48 (a) and (c), P-uniqueness of τx is equivalent to P(X=x |

CX ) >
P

0. Therefore, Equation (8.10), which is equivalent to CX ⊥⊥1X=x , in conjunction with our as-

sumption P (X=x ) > 0 implies that τx is P-unique.

(ii).

P(X=x |τx ) =
P

E(1X=x |τx ) [SN-(10.4)]

=
P

E
(

E(1X=x |CX )
∣

∣ τx

)

[σ(τx ) ⊂σ(CX ), SN-Box 10.2 (v)]

=
P

E
(

P(X=x |CX )
∣

∣ τx

)

[SN-(10.4)]

=
P

E
(

P(X=x )
∣

∣ τx

)

[(8.10)]

=
P

P(X=x ). [SN-Box 10.2 (i)]

According to Lemma 7.4, this equation is equivalent to independence of 1X=x and τx .
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(iii). τx ⊢ 1X=x is equivalent to E(τx |1X=x ) =
P

E(τx ). According to SN-Box 10.2 (vi), this equation

follows from τx ⊥⊥1X=x .

(iv). Unbiasedness of E(Y |X=x ) immediately follows from (iii) and Theorem 6.9.

(v). This proposition immediately follows from CX -measurability of Z and Proposition (7.7).

(vi). This proposition immediately follows from (v) and CX -measurability of τx .

(vii). τx ⊢ 1X=x |Z is equivalent to E(τx |1X=x , Z ) =
P

E(τx |Z ). According to SN-Proposition (16.37),

this equation follows from (vi).

(viii). Unbiasedness of E X=x(Y |Z ) immediately follows from (vii) and Theorem 6.15.

(ix). According to (viii),

E X=x(Y |Z ) =
P

E(τx |Z ).

If P(X=x , Z=z) > 0, then, according to SN-Corollary 10.39 (i), this equation implies

E(Y |X=x , Z=z) = E X=x(Y |Z=z) = E(τx |Z=z).

Proof of Theorem 8.14

(i). This proposition follows from σ(1X=x ) ⊂σ(X ) and SN-Box 16.3 (vi) for Z being a constant.

(ii). This proposition follows from σ(τx ) ⊂σ(CX ) and SN-Box 16.3 (vi) for Z being a constant.

(iii). This proposition follows from σ(τ) ⊂σ(CX ) and SN-Box 16.3 (vi) for Z being a constant.

(iv). τx ⊢ X denotes E(τx |X ) =
P

E(τx ). Therefore, this proposition follows from (ii) and SN-Box

10.2 (vi).

(v). This proposition follows from (i), Theorem 8.11 (i), (iv), and Definition 6.2 (ii).

(vi). This proposition follows from σ(Z ) ⊂ σ(CX ), CX ⊥⊥X ⇔ (CX , Z )⊥⊥ X , and SN-Box 16.3 (ix)

with Z taking the role of Y in that rule.

(vii). This proposition follows from (vi), σ(τx )⊂σ(CX ), and SN-Box 16.3 (vi).

(viii). This proposition immediately follows from (vi) and σ(τ) ⊂σ(CX ), and SN-Box 16.3 (vi).

(ix). τx ⊢ X |Z denotes E(τx |X , Z ) =
P

E(τx |Z ). Hence, this proposition follows from (vii) and SN-

Remark 16.35.

(x). This proposition follows from (i), Theorem 8.11 (i), (viii), and Definition 6.11 (iii).

Proof of Theorem 8.19

(i). This proposition immediately follows from CX -measurability of τx and Z and Proposition

(7.7).

(ii). τx ⊢ 1X=x | Z is equivalent to E(τx |1X=x , Z ) =
P

E(τx |Z ). According to SN-Proposition (16.37),

this equation follows from (i).

Proof of Theorem 8.21

(i) This proposition follows from σ(1X=x ) ⊂σ(X ) and SN-Box 16.3 (vi).

(ii) This proposition follows from σ(τx ) ⊂σ(CX ) and SN-Box 16.3 (vi).

(iii) This proposition follows from σ(τ) ⊂σ(CX ) and SN-Box 16.3 (vi).

(iv) τ⊢ X |Z denotes ∀x ∈X (Ω) : E(τx |X , Z ) =
P

E(τx |Z ). Hence, this proposition follows from (ii)

and SN-Remark 16.35.
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Proof of Corollary 8.23

(i). This proposition is an immediate implication of Corollary 8.22 (i) and Equation (8.17).

(ii). If P(X=x , Z=z) > 0, P(X =x ′, Z=z) > 0 and τx , τx ′ are P Z=z -unique, then, according to Corol-

lary 8.20 (ii), the conditional expectation values E(Y |X=x , Z=z) and E(Y |X =x ′, Z=z) are unbiased.

Equations (5.2), (5.14), and (6.30) then yield the proposition.

8.7 Exercises

⊲ Exercise 8-1 Show that CX ⊥⊥X implies:

P(X=x |W ) =
P

P(X=x ), for each x = 0,1, . . . , J ,

if the random variable W is measurable with respect to CX . Assume that X is discrete with a finite

number of values x = 0,1, . . . , J and that P(X=x ) > 0 for all values x of X .

⊲ Exercise 8-2 Compute the conditional expectation value E(Y |X = 0) and the expectation E(τ0) in

the example presented in Table 6.3 (p. 140) and compare these numbers to each other.

⊲ Exercise 8-3 Assume that X is discrete with a finite number of values x = 0,1, . . . , J . Which terms

are unbiased if CX ⊥⊥X holds and which ones are unbiased under CX ⊥⊥X |Z ? (For CX ⊥⊥X |Z addi-

tionally assume that all true outcome variables are P-unique and that Z is a covariate of X .)

⊲ Exercise 8-4 Describe randomized assignment of a unit to one of two treatment conditions!

⊲ Exercise 8-5 Describe conditionally randomized assignment of a unit to one of two treatment

conditions given a covariate Z ! For simplicity, assume that Z is discrete with P(Z=z) > 0 for all its

values z ∈Z (Ω) and that X is dichotomous with values 0 and 1.

⊲ Exercise 8-6 Show that E [P(X=x |U )]= P(X=x ).

⊲ Exercise 8-7 Show that U ⊥⊥X implies U ⊥⊥X |Z , provided that Z is measurable with respect to

U . Assume that X is discrete with a finite number of values x = 0,1, . . . , J and that P(X=x ) > 0 for all

values x of X .

⊲ Exercise 8-8 Check that all implications listed in Table 8.1 have been proven in this or the previ-

ous chapter. Use the Assumptions 6.1, that Z is a covariate of X , and the additional assumption that

the true outcome variables τx are P-unique where necessary.

Solutions

⊲ Solution 8-1

P(X=x |W ) =
P

E(1X=x |W ) [SN-(10.4)]

=
P

E
(

E(1X=x |CX )
∣

∣W
)

[SN-Box 10.2 (v)]

=
P

E
(

P(X=x |CX )
∣

∣W
)

[SN-(10.4)]

=
P

E [P(X=x ) |W ] [(8.2)]

=
P

P(X=x ), [SN-Box 10.2 (i)]

for each x = 0,1, . . . , J .
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⊲ Solution 8-2 According to SN-Box 9.2 (iv), the conditional expectation value E(Y |X = 0) can be

computed via

E(Y |X = 0) =
∑

u
E(Y |X =0,U=u) ·P(U=u |X = 0)

= (68+78+88+98) ·
1

10
+ (106+116) ·

3

10
= 99.8.

In contrast, according to SN-Theorem 6.15 as well as Equations (6.55) and (6.56), the expectation

E(τ0) can be computed via

E(τ0) = E
(

gx (U )
)

=
∑

u
gx (u) ·P(U=u )

=
∑

u
E(Y |X =0,U=u) ·P(U=u)

= (68+78+88+98+106+116) ·
1

6
= 92.3333.

Comparing E(Y |X = 0) = 99.8 to E(τ0) = 92.3333 shows that E(Y |X = 0) is strongly biased [see

Def. 6.2 (i)].

⊲ Solution 8-3 CX ⊥⊥X implies that E(Y |X ), E(Y |X , Z ), all E(Y |X=x ), and all E X=x(Y |Z ), x ∈X (Ω),

are unbiased. In contrast, CX ⊥⊥X |Z only implies that E(Y |X , Z ) and all E X=x(Y |Z ), x ∈X (Ω), are

unbiased, provided that we assume that all true outcome variables τx , x ∈X (Ω), are P-unique. How-

ever, note that the causal average total effects ATE xx ′ can also be computed from E(Y |X , Z ), pro-

vided that it is unbiased.

⊲ Solution 8-4 In a random experiment, in which a unit u is sampled and assigned to one of two

treatment conditions, we may assign the unit by coin toss, for instance. This ensures

P(X =1 |CX ) =
P

P(X =1),

that is, the treatment probabilities do not depend on the global potential confounder CX and there-

fore not on any potential confounder. If CX is specified such that U is measurable with respect to

CX , then P(X =1 |CX ) =
P

P(X =1) implies that each unit has the same probability P(X =1 |U=u) =

P(X =1) of being assigned to treatment 1. If we assume that X is dichotomous with values 0 and 1,

then this implies that each unit u has the same probability P(X =0) to be assigned to treatment 0 as

well, because

P(X =0 |U=u) = 1−P(X =1 |U=u) = 1−P(X =1) = P(X =0).

⊲ Solution 8-5 We consider a random experiment, in which a unit u is sampled and a value z of the

covariate Z is assessed before the unit is assigned to one of the two treatment conditions. We also

assume P(Z=z ) > 0 for all values z ∈Z (Ω). Then Z -conditional randomized assignment of a unit

to one of the two treatment conditions refers to assigning the unit u to treatment condition 1 with

probability

P Z=z (X =1 |CX ) =
P Z =z

P Z=z (X =1) = P(X =1 |Z=z). (8.1)

This equation implies

P Z=z (X =1 |U ) =
P Z =z

E Z=z
(

P Z=z (X =1 |CX )
∣

∣U
)

[SN-Box 10.2 (v)]

=
P Z =z

E Z=z
(

P Z=z (X =1)
∣

∣U
)

[(8.1)]

=
P Z =z

P Z=z (X =1) [SN-Box 10.2 (i)]

= P(X =1 |Z=z). [(3.28)]
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Hence, all units with the same value z of the covariate Z have the same probability to be assigned

to treatment 1. This assignment procedure allows for different treatment probabilities for units for

which we observe different values z of the covariate Z . It creates CX ⊥⊥X |Z , which implies that

E(Y |X , Z ) and all E X=x(Y |Z ), x ∈X (Ω), are unbiased.

⊲ Solution 8-6

E
(

P(X=x |U )
)

=
P

E
(

E(1X=x |U )
)

[SN-(10.4)]

=
P

E(1X=x ) [SN-Box 10.2 (iv)]

= P(X=x ). [SN-(6.5)]

⊲ Solution 8-7 If P(X=x ) > 0 for all values x of X , then X ⊥⊥U is equivalent to

P(X=x |U ) =
P

P(X=x ), ∀x ∈{0,1, . . . , J } .

If Z is measurable with respect to U , then σ(U , Z ) =σ(U ) and this equation implies

P(X=x |U , Z ) =
P

P(X=x |U ) =
P

P(X=x ), ∀x ∈{0,1, . . . , J }, (8.2)

which is equivalent to

E(1X=x |U , Z ) =
P

E(1X=x |U ) =
P

E(1X=x ), ∀x ∈{0,1, . . . , J } . (8.3)

Hence,

P(X=x |Z ) =
P

E(1X=x |Z ) [SN-(10.4)]

=
P

E
(

E(1X=x |U , Z )
∣

∣ Z
)

[SN-Box 10.2 (v)]

=
P

E
(

E(1X=x )
∣

∣ Z
)

[(8.3)]

=
P

E(1X=x ) [SN-Box 10.2, (i)]

= P(X=x ) [SN-(6.5)]

=
P

P(X=x |U , Z ), [(8.2)]

for each x = 0,1, . . . , J . Hence,

P(X=x |U , Z ) =
P

P(X=x |Z ), ∀x ∈{0,1, . . . , J } .

This equation is equivalent to X ⊥⊥U |Z if X is discrete with a finite number of values x = 0,1, . . . , J

(see SN-Rem. 16.27).

⊲ Solution 8-8 We check the implications listed in Table 8.1 row-wise.

CX ⊥⊥X ⇒ τ⊥⊥X . This is the proposition of Theorem 8.14 (iii).

CX ⊥⊥X ⇒ τ⊥⊥X |Z . This is the proposition of Theorem 8.14 (viii).

CX ⊥⊥X ⇒ CX ⊥⊥X |Z . This is the proposition of Theorem 8.14 (vi).

CX ⊥⊥X |Z ⇒ τ⊥⊥X |Z . This is the proposition of Theorem 8.21 (iii).





Chapter 9

Reichenbach-Suppes Conditions

In chapter 8, we introduced the Fisher conditions, a first class of empirically testable

causality conditions that focus on independence and Z -conditional independence of X

and a global potential confounder CX , where Z denotes a covariate of X . These causal-

ity conditions, CX ⊥⊥X and CX ⊥⊥X |Z , also apply if X is continuous. We emphasized that

CX ⊥⊥X implies CX ⊥⊥X |Z . If X is discrete with values 0,1, . . . , J , we showed that CX ⊥⊥X |Z

implies strong ignorability, that is, τ⊥⊥X |Z , where τ = (τ0,τ1, . . . ,τJ ) consists of the J +1

true outcome variables τx .

The causality conditions to be introduced in this chapter are called the Reichenbach-

Suppes conditions. They are also empirically testable, also apply if X is continuous, and

have a close relationship to strong ignorability, provided that X is discrete. We start in-

troducing these causality conditions and treat their implication structure. Then we study

their implications on other causality conditions and illustrate them by some examples. Fi-

nally, we discuss the methodological implications of this class of causality conditions. In

particular, we discuss their role in covariate selection in the analysis of causal conditional

and average total effects.

9.1 Reichenbach-Suppes Conditions

The Fisher conditions focus on (conditional) independence of the potential cause X and

potential confounders of X . In contrast, the causality conditions introduced in this chap-

ter, focus on conditional independence or conditional mean-independence of the out-

come variable Y and potential confounders of X . These conditions will summarily be re-

ferred to as the Reichenbach-Suppes conditions, honoring two pioneers who made early

contributions to the theory of causal effects (see, e. g., Reichenbach, 1956; Suppes, 1970).

9.1.1 X -Conditional Independence and Mean-Independence of Y and CX

Remark 9.1 (X -Conditional Independence of Y and CX ) Under the Assumptions 8.1 we

denote X -conditional independence of the outcome variable Y and a global potential

confounder CX of X by

Y ⊥⊥CX |X

[see Def. 7.1(ii)]. As mentioned before, an extensive treatment of conditional indepen-

dence and its properties is found, for example, in SN-chapter 16. Note that this concept

also applies if Y , CX , and X are random variables that are not necessarily numerical. ⊳
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Remark 9.2 (X -Conditional Mean-Independence) Under the Assumptions 8.1 and the

additional assumption that Y is real-valued with E (Y 2) <∞,

E (Y |X ,CX ) =
P

E (Y |X ) (9.1)

defines X -conditional mean-independence of Y from CX . We use Y ⊢CX |X to abbreviate

this equation, that is,

Y ⊢CX |X ⇔ E (Y |X ,CX ) =
P

E (Y |X ) (9.2)

(see Rem. 3.71). ⊳

Remark 9.3 (Intuitive Meaning of Y ⊢CX |X ) Referring to the filtration (Ft , t ∈T ) and the

σ-algebra F2 introduced in Definition 4.4, note that Equation (9.1) is equivalent to

E (Y |F2) =
P

E (Y |X ), (9.3)

because σ(X ,CX ) =F2 (see Def. 4.4, SN-Def. 10.2, and SN-Rem. 10.3). Intuitively speaking,

this equation means that X is the only cause of Y in the set of F2-measurable random vari-

ables, and that there is no potential confounder of X affecting the conditional expectation

of Y , once we condition on X . By definition, a potential confounder of X is measurable

with respect to F1 and we defined a global potential confounder CX such that σ(CX ) =F1.

Hence, Equations (9.1) and (9.3) do not exclude mediators and other intermediate vari-

ables (that are posterior to X and prior to Y ) to determine the conditional expectation of

Y over and above X . Nevertheless, Y ⊢CX |X is unrealistically restrictive in most applica-

tions. However, this limitation does not apply to its extension presented in section 9.1.2.

⊳

Remark 9.4 (Falsifiability of Y ⊢CX |X ) The condition Y ⊢CX |X implies some proposi-

tions that lend themselves for falsification. If W is measurable with respect to CX , then

Y ⊢CX |X implies Y ⊢W |X , that is, it implies

E (Y |X ,W ) =
P

E (Y |X ) (9.4)

(see Exercise 9-2). Hence, if Y ⊢CX |X holds, then there is no CX -measurable random vari-

able on (Ω,A,P ), that determines the conditional expectation of Y , once we condition on

X . Therefore, Y ⊢CX |X can easily be tested empirically in the sense of falsifiability. We

simply have to select a potential confounder of X , that is, a random variable W that is

measurable with respect to CX , and see if Equation (9.4) holds. If it does not hold, then the

hypothesis Y ⊢CX |X is falsified. In an empirical study, this can be done using appropriate

statistical procedures of regression analysis. ⊳

Remark 9.5 (Implications of Y ⊢CX |X if U is CX -Measurable) Assume that X represents

a treatment variable and CX is a global potential confounder such that the observational-

unit variable U is measurable with respect to CX Then Y ⊢CX |X implies

E (Y |X ,U ) =
P

E (Y |X ) . (9.5)

If P (X=x,U=u) > 0, for all pairs (x,u) ∈ X (Ω)×U (Ω), then this equation is equivalent to

∀(x,u) ∈ X (Ω)×U (Ω) : E (Y |X=x,U=u) = E (Y |X=x) .

Hence, in this case, the conditional expectation values E (Y |X=x ,U=u) are identical for

all units u, and this holds for each value x of X . As mentioned before, this condition is

unrealistically restrictive in most applications. However, this limitation does not apply to

its extension presented in section 9.1.2. ⊳
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9.1.2 (X , Z )-Conditional Independence of Y and CX

If X represents a treatment variable, often neither X -conditional independence of Y and

CX nor X -conditional mean-independence of Y from CX will hold. Much more realistic

causality conditions are (X , Z )-conditional independence of Y and CX as well as (X , Z )-

conditional mean-independence of Y from CX .

Remark 9.6 ((X , Z )-Conditional Independence of Y and CX ) Under the Assumptions 8.4,

(X , Z )-conditional independence of Y and a global potential confounder CX of X is de-

noted by

Y ⊥⊥CX |(X , Z )

Again note that none of the random variables involved needs to be numerical [see again

Def. 7.1(ii) and SN-chapter 16)]. ⊳

As will be shown in Theorem 9.12, Y ⊥⊥CX |(X , Z ) follows from Y ⊥⊥CX |X . Further-

more, if Y is numerical, nonnegative, or with finite expectation, then it implies (X , Z )-

conditional mean-independence of Y from the global potential confounder CX (see Th. 9.13),

which is also sufficient for unbiasedness of the conditional expectation E (Y |X , Z ), pro-

vided that we assume that all true outcome variables τx , x = 0,1, . . . , J , are P-unique (see

Th. 9.26).

Remark 9.7 ((X , Z )-Conditional Mean-Independence of Y from CX ) If, additionally to the

Assumptions 8.4, Y is numerical, nonnegative or with finite expectation, then

E (Y |X ,CX ) =
P

E (Y |X , Z ) (9.6)

defines (X , Z )-conditional mean-independence of Y from CX , which will be abbreviated

by Y ⊢CX |(X , Z ), that is,

Y ⊢CX |(X , Z ) ⇔ E (Y |X ,CX ) =
P

E (Y |X , Z ) (9.7)

(see again Rem. 3.71). ⊳

Remark 9.8 (An Equivalent Formulation of Y ⊢CX |(X , Z )) Because, according to Assump-

tions 8.4, Z is measurable with respect to CX ,

σ(X , Z ,CX ) = σ(X ,CX )

(see SN-Defs. 2.26 and 2.43), which in turn implies

E (Y |X , Z ,CX ) =
P

E (Y |X ,CX ) (9.8)

[see SN-Eq. (10.1)]. Hence, if Z is measurable with respect to CX , and this is part of the

Assumptions 8.4, then

E (Y |X , Z ,CX ) =
P

E (Y |X , Z ) (9.9)

is equivalent to Equation (9.6). ⊳

The conditions Y ⊥⊥CX |X , Y ⊥⊥CX |(X , Z ), Y ⊢CX |X , and Y ⊢CX |(X , Z ) will also be re-

ferred to as the Reichenbach-Suppes conditions (for total effects). They share the focus on

conditional independence or conditional mean-independence of Y and potential con-

founders of X . In contrast, the Fisher conditions treated in chapter 8 share the focus on

(Z -conditional) independence of X and potential confounders of X .
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Remark 9.9 (Intuitive Meaning of Y ⊢CX |(X , Z )) Referring to the filtration (Ft , t ∈T ) and

the σ-algebra F2 introduced in Definition 4.4, note that Equation (9.6) is equivalent to

E (Y |F2) =
P

E (Y |X , Z ), (9.10)

because σ(X ,CX ) =F2 (see again Def. 4.4), provided, of course, that Z is a covariate of X .

According to Equation (9.10), there are no F2-measurable random variables other than X

and Z that determine the conditional expectation of Y , once we condition on X and Z .

Intuitively speaking, conditioning on Z , the random variable X is the only cause of Y , in

the set all potential confounders of X . Again, note that Equation (9.10) does not preclude

mediators and intermediate variables to have an effect on Y over and above X and Z ,

because such intermediate variables are not F2-measurable. ⊳

Remark 9.10 (Falsifiability of Y ⊢CX |(X , Z )) The condition Y ⊢CX |(X , Z ) implies a pro-

position that lends itself for falsification. If Z and W are measurable with respect to CX ,

then Y ⊢CX |(X , Z ) implies

E (Y |X , Z ,W ) =
P

E (Y |X , Z ) (9.11)

(see Exercise 9-2). If Y ⊢CX |(X , Z ), and with it Equation (9.6), holds, then there is no po-

tential confounder W of X that determines the conditional expectation of Y , once we con-

dition on X and Z .

Hence, the condition Y ⊢CX |(X , Z ) can easily be tested empirically, again only in the

sense of falsifiability. In order to test Y ⊢CX |(X , Z ), we may select a variable W that is

measurable with respect to CX and see if Equation (9.11) holds. If it does not hold, then we

can conclude that Y ⊢CX |(X , Z ) is not satisfied. ⊳

Remark 9.11 (Implications of Y ⊢CX |(X , Z ) if U is CX -Measurable) Assume that X rep-

resents a treatment variable and CX is a potential global potential confounder such that

the observational-unit variable U is measurable with respect to CX . Then Y ⊢CX |(X , Z )

implies

E (Y |X , Z ,U ) =
P

E (Y |X , Z ) . (9.12)

If P (X=x, Z=z,U=u) > 0, then this equation in turn implies

E (Y |X=x, Z=z,U=u) = E (Y |X=x , Z=z) .

Hence, the conjunction of Y ⊢CX |(X , Z ), σ(U ) ⊂ σ(CX ), and P (X=x, Z=z,U=u) > 0 im-

plies that there are no differences between units u with respect to their conditional expec-

tation values of the outcome variable Y given unit u, treatment condition x, and covariate

value z. Table 9.1 (p. 211) displays an example. ⊳

9.2 Implication Structure Among the Reichenbach-Suppes Conditions

Before studying the implications of the Reichenbach-Suppes conditions on the Rosen-

baum-Rubin conditions and on unbiasedness, we consider the implication structure among

the Reichenbach-Suppes conditions. Note that the assumptions neither include that X is

discrete nor P-uniqueness of the true outcome variables.
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Theorem 9.12 (An Implication of Y ⊥⊥CX |X )

Let the Assumptions 8.1 hold.

(i) If Y be real-valued with E (Y 2) <∞, then

Y ⊥⊥CX |X ⇒ Y ⊢CX |X . (9.13)

(ii) If Z is a covariate of X , then

Y ⊥⊥CX |X ⇒ Y ⊥⊥CX |(X , Z ) . (9.14)

(Proof p. 216)

According to Theorem 9.12 (i), Y ⊥⊥CX |X implies X -conditional mean-independence

of Y from CX , if Y is real-valued with a finite second moment. Note that Y ⊢ CX |X is an-

other sufficient condition for unbiasedness of the conditional expectation E (Y |X ), pro-

vided that we assume that all true outcome variables τx , x = 0,1, . . . , J , are P-unique (see

Th. 9.21).

According to Theorem 9.12 (ii), Y ⊥⊥CX |X also implies Y ⊥⊥CX |(X , Z ) if Z is a covariate

of X . According to Theorem 9.13, Y ⊥⊥CX |(X , Z ) in turn implies Y ⊢CX |(X , Z ).

Theorem 9.13 (An Implication of Y ⊥⊥CX |(X , Z ))

Let the Assumptions 8.1 hold and let Z be a covariate of X . Then

Y ⊥⊥CX |(X , Z ) ⇒ Y ⊢CX |(X , Z ). (9.15)

(Proof p. 216)

Hence, if Z is a covariate of X , then Y ⊥⊥CX |(X , Z ) implies (X , Z )-conditional mean-

independence of Y from the global potential confounder CX . Both conditions occuring in

Proposition (9.15), the premise and the conclusion, are sufficient for unbiasedness of the

conditional expectation E (Y |X , Z ), provided that we assume that all true outcome vari-

ables τx , x = 0,1, . . . , J , are P-unique. This will be shown in Theorem 9.26.

In the following theorem we present two conditions that are equivalent to Y ⊢CX |X

and Y ⊢CX |(X , Z ), respectively, provided that, for all values x of X , P (X=x) > 0 and the

true outcome variables τx are P-unique. Reading this lemma, remember that τx denotes a

conditional expectation E X=x (Y |CX ) (see Def. 4.16), and that P-uniqueness of E X=x (Y |CX )

is equivalent to

P (X=x |CX ) >
P

0. (9.16)

Theorem 9.14 (Equivalent Conditions of Y ⊢CX |X and Y ⊢CX |(X , Z ))

Let the Assumptions 6.1 hold and assume that τx is P-unique for all x ∈X (Ω).

(i) Then Y ⊢CX |X is equivalent to

τx = E X=x(Y |CX ) =
P

E X=x(Y ), ∀x ∈X (Ω) . (9.17)
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(ii) If, additionally, Z is a covariate of X , then Y ⊢CX |(X , Z ) is equivalent to

τx = E X=x(Y |CX ) =
P

E X=x(Y |Z ), ∀x ∈X (Ω) . (9.18)

(Proof p. 216)

Remark 9.15 (Constant True Outcome Variables) According to Theorem 9.14 (i), Y ⊢CX |X

is equivalent to

τ =
P

(

E (Y |X =0), E (Y |X =1), . . . , E (Y |X = J )
)

, (9.19)

where τ= (τ0,τ1, . . . ,τJ ) is a vector of true outcome variables of the J +1 values x ∈X (Ω). ⊳

Remark 9.16 (True Outcome Variables as Functions of Z ) According to Theorem 9.14 (ii),

Y ⊢CX |(X , Z ) is equivalent to

τ =
P

(

E X =0(Y |Z ),E X =1(Y |Z ), . . . ,E X=J (Y |Z )
)

, (9.20)

where τ is the vector specified in Remark 9.15. Hence, Y ⊢CX |(X , Z ) means that Z con-

tains all potential confounders of X that determine the CX -conditional expectation of Y .

It does not mean that there are no intermediate variables in between X and Y that deter-

mine Y over and above the (possibly multivariate) covariate Z . ⊳

9.3 Further Implications of the Reichenbach-Suppes Conditions

Now we present the most important implications of the Reichenbach-Suppes conditions

on the Rosenbaum-Rubin conditions and on unbiasedness.

9.3.1 Implications of X -Conditional Mean-Independence of Y from CX

In Theorem 9.17, we consider a single value x of X with P (X=x) > 0 and the conditional

expectation value E (Y |X=x). Reading this theorem, remember that, according to Lemma

7.4, τx ⊥⊥1X=x is equivalent to

P (X=x |τx ) =
P

P (X=x).

The premise of Theorem 9.17 is Y ⊢CX |X=x, which is defined by

Y ⊢CX |X=x :⇔ E X=x(Y |CX ) =
P X=x

E X=x(Y ). (9.21)

where

E X=x(Y |CX ) =
P X=x

E X=x(Y ) (9.22)

defines mean independence of Y from CX with respect to the conditional probability mea-

sure P X=x (see Rem. 3.71 and section 3.3.6).



9.3 Further Implications of the Reichenbach-Suppes Conditions 207

Theorem 9.17 (Implications of Y ⊢CX |X=x)

Let the Assumptions 5.1 hold and assume that τx is P-unique. Then

Y ⊢CX |X=x ⇒ τx ⊥⊥X . (9.23)

(Proof p. 216)

Remark 9.18 (Further Implications of Y ⊢CX |X=x) According to Proposition (9.23) and

Table 7.5, Y ⊢CX |X=x also implies

(i) τx ⊢ 1X=x .

(ii) τx ⊥⊥1X=x .

(iii) τx ⊢ 1X=x .

(iv) E (Y |X=x) is unbiased.

⊳

Remark 9.19 (Methodological Implications) Remember, τx ⊥⊥1X=x also follows from CX ⊥⊥1X=x

[see Th. 8.11 (ii)]. However, in contrast to CX ⊥⊥1X=x , assuming Y ⊢CX |X=x does not im-

ply that τx is P-unique [cf. Th. 8.11 (i)]. This is why in Theorem 9.17 we need the additional

assumption that τx is P-unique. ⊳

Remark 9.20 (Falsifiability) It should also be emphasized that Y ⊢CX |X=x is empirically

falsifiable, because Y ⊢CX |X=x implies

E X=x(Y |W ) =
P X=x

E X=x(Y ), (9.24)

whenever W is a CX -measurable random variable [see Prop. (9.21) and Exercise 9-1]. This

mean-independence can be tested by standard regression techniques restricting the data

analysis to the subsample in treatment x. Of course, Equation (9.24) will rarely hold in

empirical applications. ⊳

In Theorem 9.17, we conditioned on a single value x of X with P (X=x) > 0 and con-

sidered the conditional expectation value E (Y |X=x). Now we condition on the random

variable X and focus the conditional expectation E (Y |X ). Reading the following theorem,

remember that Y ⊢CX |X is a shortcut for

E (Y |X ,CX ) =
P

E (Y |X ) . (9.25)

Furthermore, in Proposition (7.16) we already defined

τ ⊢ X :⇔ ∀x ∈X (Ω) : E (τx |X ) =
P

E (τx). (9.26)

Theorem 9.21 (Implications of Y ⊢CX |X )

Let the Assumptions 6.1 hold, assume that τx is P-unique for all x ∈X (Ω), and define

τ= (τ0,τ1, . . . ,τJ ).

(i) Then Y ⊢CX |X implies τ⊥⊥X .

If, additionally, Z is a covariate of X , then Y ⊢CX |X implies:
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(ii) τ⊥⊥X | Z .

(iii) Y ⊢CX |(X , Z ).

(Proof p. 216)

Remark 9.22 (Further Implications of Y ⊢CX |X ) If we assume that all τx , x ∈X (Ω), are

P-unique, then, according to Theorem 9.21 (i) and Table 7.5, Y ⊢CX |X also implies that

E (Y |X ) is unbiased and all other causality conditions listed in Table 7.5. Furthermore,

according to Theorem 9.21 (ii) and Table 7.6, Y ⊢CX |X also implies all other causality

conditions listed in Table 7.6, and that E (Y |X , Z ) is unbiased. ⊳

9.3.2 Implications of (X , Z )-Conditional Mean-Independence of Y from CX

Now we extend the results of section 9.3.1 to the case in which we condition not only

on X but additionally on a covariate Z of X . We start considering a single conditional

expectation E X=x(Y |Z ) and a single conditional expectation value E (Y |X=x , Z=z). Re-

member, the term E X=x(Y |Z ) denotes the Z -conditional expectation of Y with respect to

the (X=x)-conditional probability measure P X=x. Also remember that unbiasedness of the

conditional expectation E X=x(Y |Z ) is defined by assuming P-uniqueness of τx and

E X=x(Y |Z ) =
P

E (τx |Z ) (9.27)

[see Def. 6.11 (ii)]. Analogously to (9.21) we define

Y ⊢CX |X=x, Z :⇔ E X=x(Y |CX ) =
P X=x

E X=x(Y |Z ), (9.28)

where E X=x(Y |CX ) and E X=x(Y |Z ) denote conditional expectations with respect to the

measure P X=x (see Def. 3.79).

Theorem 9.23 (Implications of Y ⊢CX |X=x , Z )

Let the Assumptions 5.1 hold, let Z be a covariate of X , and assume that τx is P-unique.

Then

Y ⊢CX |X=x , Z ⇒ τx ⊥⊥X |Z . (9.29)

(Proof p. 217)

Remark 9.24 (Further Implications of Y ⊢CX |X=x , Z ) If Z is a covariate of X and we as-

sume that τx is P-unique, then, according to Proposition (9.29) and Table 7.6, Y ⊢CX |X=x , Z

also implies

(i) τx ⊢ 1X=x |Z .

(ii) τx ⊥⊥1X=x |Z .

(iii) τx ⊢ X |Z .

(iv) E X=x(Y |Z ) is unbiased.

⊳
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Remember, if Z is a covariate of X , E X=x(Y |CX ) is P Z=z -unique, P (X=x, Z=z) > 0, and

E (Y |X=x, Z=z) = E (τx |Z=z), (9.30)

then E (Y |X=x, Z=z) is unbiased [see Def. 6.11 (i)]. Also remember that P-uniqueness of

E X=x(Y |CX ) implies that it is also P Z=z -unique [see SN-Box 14.1 (v)]. In this sense, P Z=z -

uniqueness of E X=x(Y |CX ) is less restrictive than assuming that E X=x(Y |CX ) is P-unique.

Theorem 9.25 (Unbiasedness of E (Y |X=x , Z=z))

Let the Assumptions 5.1 hold, let Z be a covariate of X with value space (Ω′
Z ,A ′

Z ),

assume that z ∈Ω′
Z such that P (X=x, Z=z) > 0, and that τx is P Z=z -unique. Then

Y ⊢CX |X=x , Z implies that E (Y |X=x , Z=z) is unbiased.

(Proof p. 217)

Reading the following theorem, remember that σ(Z ) ⊂ σ(CX ) if we assume that Z is a

covariate of X . Under this assumption,

Y ⊢CX |(X , Z ) ⇔ E (Y |X ,CX ) =
P

E (Y |X , Z ) . (9.31)

Theorem 9.26 (Implications of Y ⊢CX |(X , Z ))

Let the Assumptions 5.1 hold, let Z be a covariate of X , assume that, for all x ∈X (Ω),

the true outcome variables τx are P-unique, and define τ= (τ0,τ1, . . . ,τJ ). Then

Y ⊢CX |(X , Z ) ⇒ τ⊥⊥X |Z . (9.32)

(Proof p. 218)

Remark 9.27 (Further Implications of Y ⊢CX |(X , Z )) If we assume that Z is a covariate

of X and τx is P-unique for all x ∈X (Ω), then, according to Proposition (9.32) and Table

7.6, Y ⊢CX |(X , Z ) also implies that E (Y |X , Z ) is unbiased and that all eight other causality

conditions listed in that table hold.

⊳

If we presume that z is a value of a covariate Z of X such that P (X=x, Z=z) > 0, then,

according to the following theorem Y ⊢CX |(X , Z ) also implies that E (Y |X=x, Z=z) is un-

biased, provided that we assume that τx is at least P Z=z -unique. [Remember, according to

SN-Box 14.1 (v), P-uniqueness of τx implies that τx is also P Z=z -unique.]

Theorem 9.28 (Y ⊢CX |(X , Z ) Implies Unbiasedness of E (Y |X=x , Z=z))

Let the Assumptions 5.1 hold, let Z be a covariate of X with value space (Ω′
Z ,A ′

Z ), as-

sume that z ∈Ω′
Z such that P (X=x, Z=z) > 0, and that τx is P Z=z -unique. Then

Y ⊢CX |(X , Z ) ⇒ E (Y |X=x , Z=z) is unbiased. (9.33)

(Proof p. 218)

Remark 9.29 (Covariate Selection) In contrast to CX ⊥⊥X |Z (see Th. 8.21), the condition

Y ⊢CX |(X , Z ) cannot be created by a design technique such as randomization. Instead
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we can only try to find a (possibly multivariate) covariate Z such that Y ⊢CX |(X , Z ) holds.

In other words, Y ⊢CX |(X , Z ) can only be used for covariate selection (see section 9.5 for

more details). ⊳

Prima Facie Effect Functions

Remember, a Z -conditional prima facie effect function is defined by

PFEZ ;xx ′ = E X=x(Y |Z ) − E X =x ′

(Y |Z ) .

Hence, unbiasedness of the conditional expectations E X=x(Y |Z ) and E X =x ′

(Y |Z ) has im-

plications on unbiasedness of PFEZ ; xx ′ and on the (Z=z)-conditional prima facie effect

PFEZ ;xx ′ (z) = E (Y |X=x, Z=z)−E (Y |X=x ′, Z=z),

which is uniquely defined if P (X=x, Z=z), P (X=x ′, Z=z) > 0.

Corollary 9.30 (Unbiasedness of Conditional Prima Facie Effects)

Let the Assumptions 5.1 hold and let Z be a covariate of X with value space (Ω′
Z ,A ′

Z ).

(i) If τx and τx ′ are P-unique, then Y ⊢CX |(X , Z ) implies

PFEZ ; xx ′(Z ) =
P

CTE Z ;xx ′(Z ). (9.34)

(ii) If z ∈Ω′
Z , P (X=x, Z=z), P (X=x ′, Z=z) > 0, and τx , τx ′ are P Z=z -unique, then

Y ⊢CX |(X , Z ) implies

PFEZ ; xx ′(z) = CTE Z ; xx ′(z). (9.35)

(Proof p. 218)

Hence, under the assumptions of Corollary 9.30, the Z -conditional prima facie effect

function PFEZ ;xx ′ (Z ) is unbiased if (a) τx and τx ′ are P-unique and (b) Y ⊢CX |(X , Z ) holds.

Correspondingly, the prima facie effect PFEZ ; xx ′(z) is unbiased, provided that (a) τx and τx ′

are P Z=z -unique, (b) P (X=x, Z=z) > 0 and P (X=x ′, Z=z) > 0, and (c) Y ⊢CX |(X , Z ).

9.4 Example

Now we illustrate (X , Z )-conditional mean-independence of Y from CX by a numerical

example.

Example 9.31 Table 9.1 (p. 211) shows an example in which Y ⊢CX |(X , Z ) holds. In this

example, CX =U and Z is U -measurable, which implies

E (Y |X , Z ,CX ) =
P

E (Y |X ,CX ) =
P

E (Y |X ,U ).

Therefore, the values of the true outcome variables are the individual conditional expecta-

tion values E (Y |X=x ,U=u). As is easily seen in the table, the true outcomes under control
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Table 9.1. (X , Z )-conditional mean-independence of Y on CX

Fundamental parameters Derived parameters

P
e

rs
o

n
v

a
ri

a
b

le
U

S
e

x
Z

P
(U

=
u

)

P
(X

=
1
|U

)

τ 0
=

E
X
=

0
(Y

|U
)

τ 1
=

E
X
=

1
(Y

|U
)

δ
1

0
=
τ 1

−
τ 0

P
(U

=
u
|X

=
0

)

P
(U

=
u
|X

=
1

)

u1 male 1/6 6/8 90 95 5 2/19 6/19

u2 male 1/6 7/8 90 95 5 1/19 7/19

u3 male 1/6 6/8 90 95 5 2/19 6/19

u4 male 1/6 7/8 90 95 5 1/19 7/19

u5 female 1/6 1/8 100 110 10 7/19 1/19

u6 female 1/6 2/8 100 110 10 6/19 2/19

x = 0 x = 1

E(τx ): 93.333 100 ATE 10 = 6.667

E(Y |X=x ): 96.842 96.552 PFE10 =−.29

E(τx |Z=m): 90 95 CTE Z ;10(m) = 5

E(Y |X=x , Z=m): 90 95 PFE Z ;10(m) = 5

E(τx |Z= f ): 100 110 CTE Z ;10( f ) = 10

E(Y |X=x , Z= f ): 100 110 PFE Z ;10( f ) = 10

and the true total effects of treatment 1 vs. 0 are the same for all male individuals and they

are the same for all female individuals. For all males, the true outcomes under control are

E (Y |X=0, Z=m,U=ui ) = E (Y |X=0, Z=m) = 90, i = 1, . . . ,4,

and for all females they are

E (Y |X=0, Z= f ,U=ui ) = E (Y |X=0, Z= f ) = 100, i = 5,6.

Under treatment, the true outcomes for all males are

E (Y |X=1, Z=m,U=ui ) = E (Y |X=1, Z=m) = 95, i = 1, . . . ,4,

and for all females they are

E (Y |X=1, Z= f ,U=ui ) = E (Y |X=1, Z= f ) = 110, i = 5,6.

Looking at the columns for τ0 and τ1 in Table 9.1 shows that, in both treatment conditions,

the expectations of the outcomes only depend on Z , that is,

τx =
P

E X=x (Y |U ) =
P

E X=x (Y |Z ), x = 0,1.



212 9 Reichenbach-Suppes Conditions

Furthermore, the true outcome variables τ0 and τ1 are uniquely defined (see SN-Th. 10.17),

because, in this example, CX =U and 0 < P (X =1 |U ) < 1. This implies that τ0 and τ1 are

also P-unique. According to SN-Remark 14.34,

E (Y |X ,U ) =
P

∑

x

E X=x (Y |U ) ·1X=x .

Hence, we conclude that in this example

E (Y |X ,CX ) =
P

E (Y |X ,U ) =
P

E (Y |X , Z ) .

Because CX =U and σ(Z ) ⊂ σ(CX ), this is Y ⊢CX |(X , Z ). Furthermore, because τ0 and τ1

are P-unique, according to Remark 9.27, Y ⊢CX |(X , Z ) implies that E (Y |X , Z ) is unbiased.

Because, P (X= x , Z=z) > 0 for all values of X and Z , according to Corollary 9.30,

Y ⊢CX |(X , Z ) also implies that the conditional prima facie effects

PFEZ ;10(m) = E (Y |X=1, Z=m)−E (Y |X=0, Z=m) = 95−90 = 5

and

PFEZ ;10( f ) = E (Y |X=1, Z= f )−E (Y |X=0, Z= f ) = 110−100 = 10

are unbiased as well, that is, PFEZ ;10(m) = CTE Z ;10(m) and PFEZ ;10( f ) = CTE Z ;10( f ). In

other words, the (Z=z)-conditional prima facie effects are equal to the causal (Z=z)-

conditional total effects.

Another conclusion is that the expectation of the conditional total effects is equal to the

causal average total effect [see Eq. (6.38)], that is,

ATE 10 = E [PFEZ ;10(Z )] = PFEZ ;10(m) ·4/6+PFE Z ;10( f ) ·2/6

= 5 ·4/6+10 ·2/6 ≈ 6.667.

Finally, note that, if Y ⊢CX |(X , Z ) holds, then the individual treatment probabilities

P (X=1 |U=u) that played a crucial role in our examples for independence and Z -condi-

tional independence of X and CX (see ch. 8) do not matter any more in the following sense:

Even though, in this example, the individual treatment probabilities P (X=1 |U=u) are

different within the male and within the female subpopulations, the (Z=z)-conditional

prima facie effects are unbiased. ⊳

9.5 Methodological Conclusions

Now we discuss the implications of the causility conditions Y ⊢CX |X and Y ⊢CX |(X , Z )

for the design and analysis of experiments and quasi-experiments.

9.5.1 Methodological Conclusions From Y ⊢CX |X

First of all, we have to realize that Y ⊢CX |X has no implications on any design technique.

Either the empirical phenomenon we study (i. e., the random experiment that we consider

in a specific empirical application) is such that Y ⊢CX |X holds, or it is such that it does

not hold. In contrast to CX ⊥⊥X , which can be created by randomized assignment of the

unit to one of the treatment conditions, there is nothing we can do that implies Y ⊢CX |X .
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In data analysis, however, we can test the hypothesis

E (Y |X ,W ) =
P

E (Y |X ) . (9.36)

And, if W is CX -measurable, then this equation follows from Y ⊢CX |X . Hence, if this equa-

tion is rejected, then we also reject the hypothesis that Y ⊢CX |X holds. For a test of the

hypothesis that Equation (9.36) holds, standard procedures of regression analysis can be

used.

9.5.2 Methodological Conclusions From Y ⊢CX |(X , Z )

In contrast to Y ⊢CX |X , we can use Y ⊢CX |(X , Z ) for covariate selection in quasi-experi-

ments aiming at the analysis of causal conditional and average total effects. By definition,

there is no randomization in a quasi-experiment. However, even under initial random-

ization, systematic attrition of subjects may invalidate the Fisher condition X ⊥⊥CX (see,

e. g., Abraham & Russell, 2004; Fichman & Cummings, 2003; Graham & Donaldson, 1993;

Shadish et al., 2002). In this case, we will say that randomization failed and that the initially

randomized experiment turned into a quasi-experiment.

In quasi-experiments, selecting the random variables Zi in the m-variate covariate

Z := (Z1, . . . , Zm) for which we can hope that Y ⊢CX |(X , Z ) holds, is a useful strategy in the

analysis of causal conditional and average total treatment effects. Again, compared to the

causality condition X ⊥⊥CX |Z , it might be easier to find covariates such that Y ⊢CX |(X , Z )

holds. If, for example, X is a treatment variable, in many cases a pre-test of the outcome

variable Y will already suffice. In contrast, there might be many covariates determining the

treatment probabilities. For instance, the severity of the disorder, knowing about the treat-

ment, and availability of the treatment are candidates for such covariates. Often only Z :=

pre-test severity of the disorder may be important as a covariate to satisfy Y ⊢CX |(X , Z ) if

the outcome variable Y is post-test severity of the disorder. However, there is no guarantee

that the pre-test is sufficient as a covariate for Y ⊢CX |(X , Z ) to hold. Whether or not it

holds depends on the application considered.

Remark 9.32 (Falsifiability) As already mentioned before, in contrast to some of the other

causality conditions treated in chapters 6 and 7, the Reichenbach-Suppes conditions can

be tested in empirical applications, at least in the sense that some consequences of these

assumptions can be checked. Falsifiability is important, because otherwise we would not

have any criterion for covariate selection, that is, for deciding whether or not a specific co-

variate should be included in the m-variate covariate Z := (Z1, . . . , Zm) for which we hope

that either CX ⊥⊥X |Z or Y ⊢CX |(X , Z ) holds.

It is easy to test Y ⊢CX |(X , Z ). For example, if W is measurable with respect to CX , then

we can test the hypothesis

E (Y |X , Z ,W ) =
P

E (Y |X , Z ), (9.1)

which follows from Y ⊢CX |(X , Z ). If we reject this hypothesis, then we also reject the

causality condition Y ⊢CX |(X , Z ). Again, we can use the well-known techniques of re-

gression analysis for such a test (see, e. g., Aiken & West, 1996; Allen, 1997; Cohen et al.,

2003; Draper & Smith, 1998; Gelman & Hill, 2007; Györfi, Kohler, Krzyzak, & Walk, 2002;

von Eye & Schuster, 1998; West & Aiken, 2005). ⊳
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Box 9.1 Reichenbach-Suppes conditions

Let the Assumptions 5.1 hold, let Z be a covariate of X , and assume that τx is P-unique for all

values x ∈X (Ω).

Conditions implying unbiasedness of E(Y |X ) and E(Y |X , Z )

Y ⊥⊥CX |X X -conditional independence of Y from CX .

Y ⊢CX |X X -conditional mean-independence of Y from CX . It is defined by

E(Y |X ,CX ) =
P

E(Y |X ) .

It may or may not hold depending on the empirical phenomenon consid-

ered. If, for all values x of X , τx is P-unique, then Y ⊢ CX |X implies that

E(Y |X ) and all its values E(Y |X=x ) are unbiased and that all E X=x(Y |Z )

as well as E(Y |X , Z ) are unbiased.

Conditions implying unbiasedness of E(Y |X , Z )

Y ⊥⊥CX |(X , Z ) (X , Z )-conditional independence of Y from CX .

Y ⊢CX |(X , Z ) (X , Z )-conditional mean-independence of Y from CX . It is defined by

E(Y |X ,CX ) =
P

E(Y |X , Z ) .

We can try to select the m-variate covariate Z = (Z1, . . . , Zm ) such that

Y ⊢CX |(X , Z ) holds. If, for all values x of X , the true outcome variable τx is

P-unique, then Y ⊢CX |(X , Z ) implies that E(Y |X , Z ) and all E X=x(Y |Z ),

x = 1,. . . , J , are unbiased. If τx is P Z=z -unique and z is a value of Z satisfy-

ing P(X=x , Z=z)> 0, then E(Y |X=x , Z=z) is unbiased.

9.6 Summary and Conclusions

In chapter 6 we introduced unbiasedness of the conditional expectation values E (Y |X=x)

and E (Y |X=x, Z=z), and unbiasedness of the conditional expectations E (Y |X ), E X=x(Y |Z )

and E (Y |X , Z ). There we showed that unbiasedness of these terms is crucial for comput-

ing causal conditional and average total effects. In chapter 7, we treated the Rosenbaum-

Rubin conditions that imply unbiasedness of those conditional expectation values and

conditional expectations. However, the Rosenbaum-Rubin conditions as well as the unbi-

asedness conditions themselves cannot be tested empirically.

In chapter 8, we introduced the Fisher conditions, a first class of empirically testable

causality conditions that focus on independence and Z -conditional independence of X

and a global potential confounder CX . There we showed, for example, that X ⊥⊥CX |Z

implies Rosenbaum and Rubin’s strong ignorability, that is, it implies τ⊥⊥X |Z , where

τ = (τ0,τ1, . . . ,τJ ) consists of the J +1 true outcome variables τx and Z is a covariate of X .

The Fisher conditions share the focus on (conditional) independence of X and potential

confounders of X .

In contrast, the causality conditions introduced in this chapter, share the focus on con-

ditional independence or conditional mean-independence of the outcome variable Y and
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Table 9.2. Implications among Reichenbach-Suppes conditions

τ
⊥⊥

X

Y
⊢

C
X
|X

Y
⊥⊥

C
X
|X

τ
⊥⊥

X
|

Z

Y
⊢

C
X
|(

X
,Z

)

Y
⊥⊥

C
X
|(

X
,Z

)

τ⊥⊥X ⇔

Y ⊢CX |X ⇒ ⇔ ⇒ ⇒

Y ⊥⊥CX |X ⇒ ⇒ ⇔ ⇒ ⇒ ⇒

τ⊥⊥X |Z ⇔

Y ⊢CX |(X , Z ) ⇒ ⇔

Y ⊥⊥CX |(X , Z ) ⇒ ⇒ ⇔

Note: An entry ⇒ (⇔) means that the condition in the row implies (is equivalent to) the con-

dition in the column, provided that the Assumptions 5.1 hold. Z is a covariate of X , and we

assume that, for all values x of X , the true outcome variables τx are P-unique. The symbols ⊢

and ⊥⊥ are explained in Box 7.1. The implications of τ⊥⊥X and of τ⊥⊥X |Z on other causality

conditions are summarized in Table 7.5.

potential confounders of X . These conditions have been referred to as the Reichenbach-

Suppes conditions. Box 9.1 displays their symbols and their definitions. We also studied the

implication relations among the Reichenbach-Suppes conditions and showed that they

imply the Rosenbaum-Rubin conditions. Table 9.2 displays the details. Combining these

results with those already displayed in Tables 7.5 and 7.6 reveals the far reaching implica-

tions of the Reichenbach-Suppes conditions. Unlike unbiasedness and the Rosenbaum-

Rubin conditions, and in line with the Fisher conditions, the Reichenbach-Suppes condi-

tions are empirically testable. Therefore, their most important methodological implication

is that they provide a viable alternative for covariate selection aiming at creating unbiased-

ness. In contrast to CX ⊥⊥X |Z , which can be used to select the covariate Z = (Z1, . . . , Zm)

such that X and the global potential confounder CX are Z -conditionally independent, we

can use Y ⊢CX |(X , Z ) to select Z such that Y is (X , Z )-conditionally mean-independent

from CX .

Last but not least it should be emphasized that the Reichenbach-Suppes conditions

may also hold if X is a continuous random variable. In this case the theory of true outcome

variables does not apply any more, because it rests on the assumption that the values x of

X have a nonzero probability. This assumption does not hold if X is continuous. Nev-

ertheless, we can meaningfully talk about causal dependencies if one of the four causality

conditions listed in Box 9.1 holds. Hence, the Reichenbach-Suppes conditions are relevant

beyond the true outcome theory of causal effects.
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9.7 Proofs

Proof of Theorem 9.12

(i) This proposition immediately follows from SN-Remark 16.35.

(ii) This proposition immediately follows from SN-Box 16.3 (x).

Proof of Theorem 9.13

This proposition immediately follows from SN-Remark 16.35.

Proof of Theorem 9.14

We only have to prove (ii) because (i) is a special case of (ii) for Z being a constant. Note that our

assumptions include that Z is CX -measurable, implying that Equations (9.6) and (9.9) are equiva-

lent to each other. Because we assume P (X=x ) > 0 for all x ∈X (Ω), according to SN-Remark 14.70,

Equation (9.9) implies

E X=x(Y |CX ) =
P X=x

E X=x(Y |Z ), ∀x ∈X (Ω) .

Assuming P-uniqueness of E X=x(Y |CX ) immediately yields (9.18). Vice versa, if Equation (9.18)

holds, then

E(Y |X ,CX ) =
P

∑

x∈X (Ω)

E X=x(Y |CX ) ·1X=x [SN-Rem. 14.34]

=
P

∑

x∈X (Ω)

E X=x(Y |Z ) ·1X=x [(9.18)]

=
P

E(Y |X , Z ). [SN-Rem. 14.34]

Proof of Theorem 9.17

Y ⊢CX |X=x ⇔ E X=x(Y |CX ) =
P X=x

E X=x(Y ) [(9.21)]

⇒ E X=x(Y |CX ) =
P

E X=x(Y ) [τx is P-unique ]

⇒ τx =
P

E X=x(Y ) [τx =
P

E X=x(Y |CX )]

⇒ τx ⊥⊥X . [SN-Lem. 5.51]

Proof of Theorem 9.21

(i).

Y ⊢CX |X

⇔ E(Y |X ,CX ) =
P

E(Y |X ) [(9.2)]

⇔ ∀x ∈X (Ω) : E X=x(Y |CX ) =
P

E X=x(Y ) [Lem. 9.14 (i)]
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⇒ ∀x ∈X (Ω) : τx =
P

E X=x(Y ) [τx = E X=x(Y |CX ), τx is P-unique ]

⇒ τ =
P

(

E X =0(Y ),E X =1(Y ), . . . ,E X =J (Y )
)

[τ= (τ0,τ1 , . . . ,τJ )]

⇒ τ⊥⊥X . [SN-Lem. 5.51]

(ii). This proposition follows from τ =
P

(

E X =0(Y ),E X =1(Y ), . . . ,E X =J (Y )
)

and SN-Box 16.3 (xii).

(iii).

E(Y |X , Z ) =
P

E
(

E(Y |X ,CX )
∣

∣ X , Z
)

[σ(Z ) ⊂σ(CX ), SN-Box 10.2 (v)]

=
P

E
(

E(Y |X )
∣

∣ X , Z
)

[(9.25)]

=
P

E(Y |X ) . [SN-Box 10.2 (vii)]

=
P

E(Y |X ,CX ) . [(9.25)]

According to (9.7) this proves the proposition.

Proof of Theorem 9.23

Y ⊢CX |X=x , Z ⇔ E X=x(Y |CX ) =
P X=x

E X=x(Y |Z ) [(9.21)]

⇒ τx =
P

E X=x(Y |Z ) . [τx =
P

E X=x(Y |CX ), τx is P-unique ]

Furthermore,

E X=x(Y |Z )⊥⊥X | Z [σ
(

E X=x(Y |Z )
)

⊂σ(Z ), SN-Box 16.3 (iv)]

⇒ τx ⊥⊥X | Z . [τx =
P

E X=x(Y |Z ), SN-Box 16.3 (xi)]

Proof of Theorem 9.25

Y ⊢CX |X=x , Z is defined by Proposition (9.28) and, because we assume that Z is CX -measurable, it

implies E X=x(Y |Z ) ∈ E
X=x(Y |CX ) (see SN-Rem. 10.14). Because P(X=x , Z=z)> 0 implies P(Z=z ) >

0, and because we assume that τx is P Z=z -unique, according SN-Remark 10.13,

τx =
P Z =z

E X=x(Y |Z ), ∀τx ∈ E
X=x(Y |CX ) . (9.2)

Furthermore,

E(τx |Z=z) = E
(

E X=x(Y |Z )
∣

∣ Z=z
)

[P(Z=z) > 0, (9.2)]

= E X=x(Y |Z=z) [SN-(14.22)]

= E(Y |X=x , Z=z) . [SN-(14.37)]
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Proof of Theorem 9.26

Y ⊢CX |(X , Z )

⇔ E(Y |X ,CX ) =
P

E(Y |X , Z ) [(9.7)]

⇔ ∀x ∈X (Ω) : E X=x(Y |CX ) =
P

E X=x(Y |Z ) [Th. 9.14 (ii)]

⇒ ∀x ∈X (Ω) : τx =
P

E X=x(Y |Z ) [τx =
P

E X=x(Y |CX ), τx is P-unique ]

⇒ τ =
P

(

E X =0(Y |Z ),E X =1(Y |Z ), . . . ,E X=J (Y |Z )
)

[τ= (τ0,τ1 , . . . ,τJ )]

⇒ τ⊥⊥X |Z . [σ(τ) ⊂σ(Z ), SN-Box 16.3 (iv), (xi)]

Note that SN-Box 16.3 (xi) implies τ⊥⊥ X |Z for all versions of τ, even those that are not Z -measurable.

Proof of Theorem 9.28

Y ⊢CX |(X , Z ) is defined by Proposition (9.7) and, becauseσ(Z ) ⊂σ(CX ), according to SN-Proposition

(14.81), it implies

∀x ∈X (Ω) : E X=x(Y |CX ) =
P X=x

E X=x(Y |Z ) . (9.3)

Using the shortcut introduced in Proposition (9.28), this can equivalently be written

∀x ∈X (Ω) : Y ⊢CX |X=x , Z . (9.4)

Now Theorem 9.25 implies the proposition.

Proof of Corollary 9.30

(i). This proposition follows from Theorem 9.26, Theorem 9.23, Equations (5.2), (5.16), and (6.29).

(ii) If P(X=x , Z=z) > 0, P(X =x ′, Z=z) > 0 and τx , τx ′ are P Z=z -unique, then, according to The-

orem 9.28, the conditional expectation values E(Y |X=x , Z=z) and E(Y |X =x ′, Z=z) are unbiased.

Equations (5.2), (5.14), and (6.30) then yield the proposition.

9.8 Exercises

⊲ Exercise 9-1 Show that Y ⊢CX |X=x implies E X=x(Y |W ) =
P X=x

E X=x(Y ), if we assume that W is a

CX -measurable random variable.

⊲ Exercise 9-2 Show that Y ⊢CX |(X , Z ) implies E(Y |X , Z ,W ) =
P

E(Y |X , Z ) if both Z and W are

measurable with respect to the global potential confounder CX .

⊲ Exercise 9-3 Let the Assumptions 6.1 hold, let Z be a covariate of X , and assume that τx is

P-unique for all x = 0,1, . . . , J . Which unbiasedness conditions follow from Y ⊢CX |X and which ones

from Y ⊢CX |(X , Z ) ?

⊲ Exercise 9-4 Check that all implications listed in Table 9.2 have been proven in this chapter. Use

the Assumptions 6.1, that Z is a covariate of X , and the additional assumption that all true outcome

variables τx are P-unique.
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Solutions

⊲ Solution 9-1 By definition, Y ⊢CX |X=x is equivalent to E X=x(Y |CX ) =
P X=x

E X=x(Y ) [see (9.21)].

Hence,

E X=x(Y |W ) =
P X=x

E X=x
(

E X=x(Y |CX ) |W
)

[σ(W ) ⊂σ(CX ), SN-Box 10.2 (v)]

=
P X=x

E X=x
(

E X=x(Y ) |W
)

[(9.22)]

=
P X=x

E X=x(Y ). [SN-Box 10.2 (i)]

⊲ Solution 9-2

E(Y |X , Z ,W ) =
P

E
(

E(Y |X ,CX )
∣

∣ X , Z ,W
)

[σ(Z ) ⊂σ(CX ), SN-Box 10.2 (v)]

=
P

E
(

E(Y |X , Z )
∣

∣ X , Z ,W
)

[Y ⊢CX |(X , Z )]

=
P

E(Y |X , Z ) . [Box SN-10.2 (vii)]

⊲ Solution 9-3 Under the assumptions mentioned in the exercise, Y ⊢CX |X implies that E(Y |X ),

all its values E(Y |X=x ), and the prima facie effects PFExx ′ are unbiased. Under the same as-

sumptions Y ⊢CX |(X , Z ) implies that E(Y |X , Z ) and all conditional expectations E X=x(Y |Z ), x =

0,1, . . . , J , are unbiased. Furthermore, if τx is P-unique and z is a value of Z satisfying P(X=x , Z=z) >

0, then Y ⊢CX |(X , Z ) also implies that E(Y |X=x , Z=z) is unbiased.

⊲ Solution 9-4 We check the implications listed in Table 9.2 row-wise.

(a) Y ⊢CX |X ⇒ τ⊥⊥X . This is Proposition (i) of Theorem 9.21.

(b) Y ⊢CX |X ⇒ τ⊥⊥X |Z . This is Proposition (ii) of Theorem 9.21.

(c) Y ⊢CX |X ⇒ Y ⊢CX |(X , Z ). This is Proposition (iii) of Theorem 9.21.

(d) Y ⊥⊥CX |X ⇒ τ⊥⊥X . This proposition immediately follows from (e) and (a).

(e) Y ⊥⊥CX |X ⇒ Y ⊢ CX |X . This proposition follows from Theorem 9.12 (i) and Proposition

(9.2).

(f ) Y ⊥⊥CX |X ⇒ τ⊥⊥X | Z . This proposition immediately follows from (e) and (b).

(g) Y ⊥⊥CX |X ⇒ Y ⊢CX |(X , Z ). This proposition immediately follows from (e) and (c).

(h) Y ⊥⊥CX |X ⇒ Y ⊥⊥CX |(X , Z ). This is the proposition of Theorem 9.12 (ii).

(i) Y ⊢CX |(X , Z ) ⇒ τ⊥⊥X | Z . This is the proposition of Theorem 9.26.

(j) Y ⊥⊥CX |(X , Z ) ⇒ τ⊥⊥ X | Z . This proposition follows from (k) and (i).

(k) Y ⊥⊥CX |(X , Z ) ⇒ Y ⊢CX |(X , Z ). This proposition follows from Theorem 9.13 and Proposi-

tion (9.7)
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